The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ∼10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the
Ultraluminous X-ray sources (ULX) are off-nuclear point sources in nearby galaxies whose X-ray luminosity exceeds the theoretical maximum for spherical
The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband X-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow's kinetic power larger than 10 46 ergs per second is enough to provide the feedback required by models of black hole and host galaxy co-evolution.Disk winds are theoretically expected as a natural consequence of highly efficient accretion onto supermassive black holes (1), as the energy radiated in this process might easily exceed the local binding energy of the gas. In the past few years, black hole winds with column densities of ~10 23 cm -2 and velocities of ~0.1 times the speed of light (c) have been revealed in a growing number of nearby active galactic nuclei (AGN) through blueshifted X-ray absorption lines (2,3). Outflows of this kind are commonly believed to affect the dynamical and physical properties of the gas in the host galaxy, and, hence, its star formation history (4). However, a complete observational characterization of how this feedback works is still missing. On its own, the detection of narrow, blueshifted features does not convey any information about the opening angle or the ejection site of the wind. This knowledge is critical for measuring the total power carried by the outflow, whose actual influence on galactic scales remains unclear (5).The nearby (z = 0.184) radio-quiet quasar PDS 456 is an established Rosetta stone for studying disk winds (6-8). With a bolometric luminosity L bol ~ 10 47 erg/s, and a mass of the central black hole on the order of 10 9 solar masses (M sun ) (9), it is an exceptionally luminous AGN in the local universe and might be regarded as a counterpart of the accreting supermassive black holes during the peak of quasar activity at high redshift. Since the earliest X-ray observations, PDS 456 has regularly exhibited a deep absorption trough at rest-frame energies above 7 keV (6), which was occasionally resolved with high statistical significance into a pair of absorption lines at ~9.09 and 9.64 keV (7). Because no strong atomic transitions from cosmically abundant elements correspond to these energies, such lines are most likely associated with resonant K-shell absorption from Fe XXV Heα (6.7 keV) and Fe XXVI Lyα (6.97 keV) in a wind with an outflow velocity of ~0.3c.The X-ray Multi-Mirror Mission (XMM)-Newton and Nuclear Spectroscopic Telescope Array (NuSTAR) satellites simultaneously observed PDS 456 on four occasions in 2013, between 27 August and 21 September. A fifth observation was performed several months later, on 26 February 2014 (Table S...
The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signalto-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few ×10 −12 GeV −1 and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling g ae with sensitivity −for the first time− to values of g ae not previously excluded by astrophysics. With several other possible physics cases, IAXO has the potential to serve as a multi-purpose facility for generic axion and ALP research in the next decade. In this paper we present the conceptual design of IAXO, which follows the layout of an enhanced axion helioscope, based on a purpose-built 20m-long 8-coils toroidal superconducting magnet. All the eight 60cm-diameter magnet bores are equipped with focusing x-ray optics, able to focus the signal photons into ∼ 0.2 cm 2 spots that are imaged by ultra-low-background Micromegas x-ray detectors. The magnet is built into a structure with elevation and azimuth drives that will allow for solar tracking for ∼12 h each day.
The search for diffuse non-thermal inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been undertaken with many instruments, with most detections being either of low significance or controversial. Because all prior telescopes sensitive at E > 10 keV do not focus light and have degree-scale fields of view, their backgrounds are both high and difficult to characterize. The associated uncertainties result in lower sensitivity to IC emission and a greater chance of false detection. In this work, we present 266 ks NuSTAR observations of the Bullet cluster, which is detected in the energy range 3-30 keV. NuSTAR's unprecedented hard X-ray focusing capability largely eliminates confusion between diffuse IC and point sources; however, at the highest energies, the background still dominates and must be well understood. To this end, we have developed a complete background model constructed of physically inspired components constrained by extragalactic survey field observations, the specific parameters of which are derived locally from data in non-source regions of target observations. Applying the background model to the Bullet cluster data, we find that the spectrum is well-but not perfectly-described as an isothermal plasma with kT = 14.2 ± 0.2 keV. To slightly improve the fit, a second temperature component is added, which appears to account for lower temperature emission from the cool core, pushing the primary component to kT ∼ 15.3 keV. We see no convincing need to invoke an IC component to describe the spectrum of the Bullet cluster, and instead argue that it is dominated at all energies by emission from purely thermal gas. The conservatively derived 90% upper limit on the IC flux of 1.1 × 10 −12 erg s −1 cm −2 (50-100 keV), implying a lower limit on B 0.2 μG, is barely consistent with detected fluxes previously reported. In addition to discussing the possible origin of this discrepancy, we remark on the potential implications of this analysis for the prospects for detecting IC in galaxy clusters in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.