Medicago truncatula, a diploid autogamous legume, is currently being developed as a model plant for the study of root endosymbiotic associations, including nodulation and mycorrhizal colonization. An important requirement for such a plant is the possibility of rapidly introducing and analyzing chimeric gene constructs in root tissues. For this reason, we developed and optimized a convenient protocol for Agrobacterium rhizogenes-mediated transformation of M. truncatula. This unusual protocol, which involves the inoculation of sectioned seedling radicles, results in rapid and efficient hairy root organogenesis and the subsequent development of vigorous "composite plants." In addition, we found that kanamycin can be used to select for the cotransformation of hairy roots directly with gene constructs of interest. M. truncatula composite plant hairy roots have a similar morphology to normal roots and can be nodulated successfully by their nitrogen-fixing symbiotic partner, Sinorhizobium meliloti. Furthermore, spatiotemporal expression of the Nod factor-responsive reporter pMtENOD11-gusA in hairy root epidermal tissues is indistinguishable from that observed in Agrobacterium tumefaciens-transformed lines. M. truncatula hairy root explants can be propagated in vitro, and we demonstrate that these clonal lines can be colonized by endomycorrhizal fungi such as Glomus intraradices with the formation of arbuscules within cortical cells. Our results suggest that M. truncatula hairy roots represent a particularly attractive system with which to study endosymbiotic associations in transgenically modified roots.
Legumes can enter into symbiotic relationships with both nitrogen-fixing bacteria (rhizobia) and mycorrhizal fungi. Nodulation by rhizobia results from a signal transduction pathway induced in legume roots by rhizobial Nod factors. DMI3, a Medicago truncatula gene that acts immediately downstream of calcium spiking in this signaling pathway and is required for both nodulation and mycorrhizal infection, has high sequence similarity to genes encoding calcium and calmodulin-dependent protein kinases (CCaMKs). This indicates that calcium spiking is likely an essential component of the signaling cascade leading to nodule development and mycorrhizal infection, and sheds light on the biological role of plant CCaMKs.
Rhizobium nodulation (Nod) factors are lipo-chitooligosaccharides that act as symbiotic signals, eliciting several key developmental responses in the roots of legume hosts. Using nodulation-defective mutants of Medicago truncatula , we have started to dissect the genetic control of Nod factor transduction. Mutants in four genes ( DMI1 , DMI2 , DMI3 , and NSP ) were pleiotropically affected in Nod factor responses, indicating that these genes are required for a Nod factoractivated signal transduction pathway that leads to symbiotic responses such as root hair deformations, expressions of nodulin genes, and cortical cell divisions. Mutant analysis also provides evidence that Nod factors have a dual effect on the growth of root hair: inhibition of endogenous (plant) tip growth, and elicitation of a novel tip growth dependent on (bacterial) Nod factors. dmi1 , dmi2 , and dmi3 mutants are also unable to establish a symbiotic association with endomycorrhizal fungi, indicating that there are at least three common steps to nodulation and endomycorrhization in M. truncatula and providing further evidence for a common signaling pathway between nodulation and mycorrhization. INTRODUCTIONSymbiotic bacteria of the genera Rhizobium , Bradyrhizobium , Azorhizobium , and Sinorhizobium , collectively referred to as rhizobia, are able to elicit on their leguminous hosts the formation of specialized organs, called nodules, capable of fixation of atmospheric nitrogen. Among the earliest visible manifestations of symbiotic development are the infection of root hair cells by bacteria, contained in plant-derived infection structures called infection threads, and the induction of cortical divisions to form the nascent nodule primordium (Mylona et al., 1995;Schultze and Kondorosi, 1998).Genetic analysis of rhizobia has led to identification of nod genes, which are involved in the control of host specificity, infection, and nodulation. nod gene expression is under the control of plant signals, essentially flavonoids, excreted in the rhizosphere. Once activated, nod genes specify the synthesis of nodulation (Nod) factors, which are lipo-chitooligosaccharides (Dénarié et al., 1996). Purified Nod factors are capable of eliciting in the roots of the legume hosts many of the plant responses characteristic of the bacteria themselves (Dénarié and Cullimore, 1993): root hair deformations, activation of the plant genes that are specifically induced during early stages of nodulation (early nodulin genes), initiation of cortical cell division, and triggering of a plant organogenic program that leads to nodule formation. Nod factors thus act as symbiotic signaling molecules for initiating nodule development. They also play a key role in the control of specificity of infection and nodulation, the result of particular substitutions present on the basic backbone of the Nod factor molecule (reviewed in Long, 1996; Cohn et al., 1998;Schultze and Kondorosi, 1998).One of the most challenging areas of research in the study of the Rhizobium-legume symbiosis...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.