In 1990, a clinical trial was started using retroviral-mediated transfer of the adenosine deaminase (ADA) gene into the T cells of two children with severe combined immunodeficiency (ADA- SCID). The number of blood T cells normalized as did many cellular and humoral immune responses. Gene treatment ended after 2 years, but integrated vector and ADA gene expression in T cells persisted. Although many components remain to be perfected, it is concluded here that gene therapy can be a safe and effective addition to treatment for some patients with this severe immunodeficiency disease.
CD4(+)CD25(+) regulatory T (T(reg)) cells have a crucial role in maintaining immune tolerance. Mice and humans born lacking T(reg) cells develop severe autoimmune disease, and depletion of T(reg) cells in lymphopenic mice induces autoimmunity. Interleukin (IL)-2 signaling is required for thymic development, peripheral expansion and suppressive activity of T(reg) cells. Animals lacking IL-2 die of autoimmunity, which is prevented by administration of IL-2-responsive T(reg) cells. In light of the emerging evidence that one of the primary physiologic roles of IL-2 is to generate and maintain T(reg) cells, the question arises as to the effects of IL-2 therapy on them. We monitored T(reg) cells during immune reconstitution in individuals with cancer who did or did not receive IL-2 therapy. CD4(+)CD25(hi) cells underwent homeostatic peripheral expansion during immune reconstitution, and in lymphopenic individuals receiving IL-2, the T(reg) cell compartment was markedly increased. Mouse studies showed that IL-2 therapy induced expansion of existent T(reg) cells in normal hosts, and IL-2-induced T(reg) cell expansion was further augmented by lymphopenia. On a per-cell basis, T(reg) cells generated by IL-2 therapy expressed similar levels of FOXP3 and had similar potency for suppression compared to T(reg) cells present in normal hosts. These studies suggest that IL-2 and lymphopenia are primary modulators of CD4(+)CD25(+) T(reg) cell homeostasis.
Nonmyeloablative conditioning followed by a T-cell-depleted hematopoietic stem-cell allograft is a feasible option for patients with chronic granulomatous disease, recurrent life-threatening infections, and an HLA-identical family donor.
Lymphoid cells infiltrating into human tumors can be expanded in vitro in medium containing interleukin-2 (IL-2). Adoptive transfer of these tumor-infiltrating lymphocytes (TIL) mediates potent antitumor effects in murine tumor models. Clinical trials to evaluate the efficacy of these cells in patients with advanced cancer are underway. We have investigated whether infused TIL labeled with indium 111 (111In) oxine can traffic and localize to metastatic deposits of tumor. Six patients with metastatic malignant melanoma who had multiple sites of subcutaneous, nodal, and/or visceral disease were the subjects of the study. The patients received cyclophosphamide 36 hours before receiving the intravenous (IV) infusion of TIL followed by IL-2 IV every eight hours. The distribution and localization of the TIL were evaluated using serial whole body gamma camera imaging, serial blood and urine samplings, and serial biopsies of tumor and normal tissue. 111In-labeled TIL localized to lung, liver, and spleen within two hours after the infusion of activity. Activity in the lung diminished within 24 hours. As early as 24 hours after injection of 111In-labeled TIL, localization of TIL to sites of metastatic deposits was demonstrated in all six patients using either imaging studies or biopsy specimens or both. 111In activity in tumor tissue biopsies ranged from three to 40 times greater than activity in normal tissue. A progressive increase in the radioactive counts at sites of tumor deposit was seen. This study shows that labeled TIL can localize preferentially to tumor, and provides information concerning the possible mechanism of the therapeutic effects of TIL.
Little is known about the potential for engraftment of autologous hematopoietic stem cells in human adults not subjected to myeloablative conditioning regimens. Five adult patients with the p47 phox deficiency form of chronic granulomatous disease received intravenous infusions of autologous CD34 ؉ peripheral blood stem cells (PBSCs) that had been transduced ex vivo with a recombinant retrovirus encoding normal p47 phox . Although marrow conditioning was not given, functionally corrected granulocytes were detectable in peripheral blood of all five patients. Peak correction occurred 3-6 weeks after infusion and ranged from 0.004 to 0.05% of total peripheral blood granulocytes. Corrected cells were detectable for as long as 6 months after infusion in some individuals. Thus, prolonged engraftment of autologous PBSCs and continued expression of the transduced gene can occur in adults without conditioning. This trial also piloted the use of animal protein-free medium and a blood-bankcompatible closed system of gas-permeable plastic containers for culture and transduction of the PBSCs. These features enhance the safety of PBSCs directed gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.