OBJECTIVESpecific autoantibodies characterize type 1 diabetes in childhood but are also found in adult-onset diabetes, even when initially non–insulin requiring, e.g., with latent autoimmune diabetes (LADA). We aimed to characterize adult-onset autoimmune diabetes.RESEARCH DESIGN AND METHODSWe consecutively studied 6,156 European diabetic patients attending clinics within 5 years of diagnosis (age range, 30–70 years) examined cross-sectionally clinically and for GAD antibodies (GADA) and antibodies to insulinoma-associated antigen-2 (IA-2A) and zinc-transporter 8 (ZnT8A).RESULTSOf 6,156 patients, 541 (8.8%) had GADA and only 57 (0.9%) IA-2A or ZnT8A alone. More autoantibody-positive than autoantibody-negative patients were younger, leaner, on insulin (49.5 vs. 13.2%), and female (P < 0.0001 for each), though LADA patients (9.7% of total) did not show categorically distinct clinical features from autoantibody-negative type 2 diabetes. Similarly, more GADA patients with high (>200 World Health Organization IU) (n = 403) compared with low (n = 138) titer were female, lean, and insulin treated (54.6 vs. 39.7%) (P < 0.02 for each). Autoantibody-positive patients usually had GADA (541 of 598; 90.5%) and had LADA more often than type 1 autoimmune diabetes (odds ratio 3.3).CONCLUSIONSAdult-onset autoimmune diabetes emerges as a prevalent form of autoimmune diabetes. Our results indicate that adult-onset autoimmune diabetes in Europe encompasses type 1 diabetes and LADA in the same broad clinical and autoantibody-positive spectrum. At diagnosis, patients with adult-onset autoimmune diabetes are usually non–insulin requiring and clinically indistinguishable from patients with type 2 diabetes, though they tend to be younger and leaner. Only with screening for autoantibodies, especially GADA, can they be identified with certainty.
Mucosally induced immunological tolerance is an attractive strategy for preventing or treating illnesses resulting from untoward inf lammatory immune reactions against self-or non-self-antigens. Oral administration of relevant autoantigens and allergens has been reported to delay or suppress onset of clinical disease in a number of experimental autoimmune and allergic disorders. However, the approach often requires repeated feeding of large amounts of tolerogens over long periods and is only partly effective in animals already systemically sensitized to the ingested antigen such as in animals already harboring autoreactive T cells, and thus presumably also in humans with an autoimmune disease. We have recently shown that oral administration of microgram amounts of antigen coupled to cholera toxin B subunit (CTB), can effectively suppress systemic T cell reactivity in naive as well as in immune animals. We now report that feeding small amounts (2-20 g) of human insulin conjugated to CTB can effectively suppress beta cell destruction and clinical diabetes in adult nonobese diabetic (NOD) mice. The protective effect could be transferred by T cells from CTBinsulin-treated animals and was associated with reduced lesions of insulitis. Furthermore, adoptive co-transfer experiments involving injection of Thy-1,2 recipients with diabetogenic T cells from syngeneic mice and T cells from congenic Thy-1,1 mice fed with CTB-insulin demonstrated a selective recruitment of Thy-1,1 donor cells in the peripancreatic lymph nodes concomitant with reduced islet cell infiltration. These results suggest that protection against autoimmune diabetes can be achieved by feeding minute amounts of a pancreas islet cell autoantigen linked to CTB and appears to involve the selective migration and retention of protective T cells into lymphoid tissues draining the site of organ injury.
Aims/hypothesis Displaying immunomodulatory capacities, mesenchymal stem cells (MSCs) are considered as beneficial agents for autoimmune diseases. The aim of this study was to examine the ability of MSCs to prevent autoimmune diabetes in the NOD mouse model. Methods Prevention of spontaneous insulitis or of diabetes was evaluated after a single i.v. injection of MSCs in 4-week-old female NOD mice, or following the coinjection of MSCs and diabetogenic T cells in irradiated male NOD recipients, respectively. The frequency of CD4 + FOXP3 + cells and Foxp3 mRNA levels in the spleen of male NOD recipients were also quantified. In vivo cell homing was assessed by monitoring 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE)-labelled T cells or MSCs. In vitro, cell proliferation and cytokine production were assessed by adding graded doses of irradiated MSCs to insulin B9-23 peptide-specific T cell lines in the presence of irradiated splenocytes pulsed with the peptide. Results MSCs reduced the capacity of diabetogenic T cells to infiltrate pancreatic islets and to transfer diabetes. This protective effect was not associated with the modification of diabetogenic T cell homing, but correlated with a preferential migration of MSCs to pancreatic lymph nodes. While injection of diabetogenic T cells resulted in a decrease in levels of FOXP3 + regulatory T cells, this decrease was inhibited by MSC co-transfer. Moreover, MSCs were able to suppress both allogeneic and insulin-specific proliferative responses in vitro. This suppressive effect was associated with the induction of IL10-secreting FOXP3 + T cells. Conclusions/interpretation MSCs prevent autoimmune beta cell destruction and subsequent diabetes by inducing regulatory T cells. MSCs may thus offer a novel cell-based approach for the prevention of autoimmune diabetes and for islet cell transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.