Despite the severe threats to plant habitats and high levels of extinction risk for plant species in many parts of the world, plant conservation priorities are often poorly represented in national and global frameworks because of a lack of data in an accessible and consistent format to inform conservation decision making. The Important Plant Areas (IPAs) criteria system offers a pragmatic yet scientifically rigorous means of delivering these datasets, enabling informed national-or regional-scale conservation prioritisation, and contributing significantly towards global prioritisation systems including the International Union for Conservation of Nature Key Biodiversity Areas (KBAs) Standard. In this paper, we review the IPA rationale and progress on IPA identification to date, including the perceived limitations of the process and how these may be overcome. We then present a revised set of criteria for use globally, developed through the combined experiences of IPA -017-1336-6 identification over the past decade and a half and through a recent global consultation process. An overview of how the revised IPA criteria can work alongside the newly published KBA Standard is also provided. IPA criteria are based around a sound, scientific, global framework which acknowledges the practical problems of gathering plant and habitat data in many regions of the world, and recognises the role of peer reviewed expert opinion in the selection process. National and sub-national engagement in IPA identification is essential, providing a primary route towards long term conservation of key sites for plant diversity. The IPA criteria can be applied to the conservation of all organism groups within the plant and fungal kingdoms.
Globally, carbon-rich mangrove forests are deforested and degraded due to land-use and land-cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area. The Additional supporting information may be found online in the Supporting Information section. How to cite this article: Sasmito SD, Sillanpää M, Hayes MA, et al. Mangrove blue carbon stocks and dynamics are controlled by hydrogeomorphic settings and land-use change. Glob
The rich forests of Indonesian New Guinea are threatened. We used satellite data to examine annual forest loss, road development and plantation expansion from 2001 to 2019, then developed a model to predict future deforestation in this understudied region. In 2019, 34.29 million hectares (Mha), or 83% of Indonesian New Guinea, supported old-growth forest. Over nineteen years, two percent (0.75 Mha) were cleared: 45% (0.34 Mha) converted to industrial plantations, roads, mine tailings, or other uses near cities; 55% (0.41 Mha) cleared by transient processes including selective natural timber extraction, inland water bodies-related processes, fires, and shifting agriculture. Industrial plantations expanded by 0.23 Mha, with the majority (0.21 Mha; 28% of forest loss) replacing forests and reaching 0.28 Mha in 2019 (97% oil palm; 3% pulpwood). The Trans-Papua Highway, a 4,000 km national investment project, increased by 1,554 km. Positive correlations between highway and plantations expansion indicate these are linked processes. Plantations and roads grew rapidly after 2011, peaked in 2015/16, and declined thereafter. Indonesian government allocated 2.62 Mha of land for the development of industrial plantations (90% oil palm 10% pulpwood) of which 74% (1.95 Mha) remained forest in 2019. A spatial model predicts that an additional 4.5 Mha of forest could be cleared by 2036 if Indonesian New Guinea follows similar relationships to Indonesian Borneo. We highlight the opportunities for policy reform and the importance of working with indigenous communities, local leaders, and provincial government to protect the biological and cultural richness still embodied in this remarkable region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.