Recent earthquakes have demonstrated that rupture may propagate through geometrically complex networks of faults. Ancient exhumed faults have the potential to reveal the details of complex rupture at seismogenic depths. We present a new set of field observational criteria for determining which of a population of pseudotachylyte fault veins formed in the same earthquake and apply it to map rupture networks representing single earthquakes. An exceptional exposure of an exhumed ancient strand of the Norumbega Shear Zone preserves evidence of multistranded earthquake rupture in the deep seismogenic zone of a continental transform fault. Individual fault strands slipped at least 2–18 cm, so significant slip is represented by each rupture network. Our data show that synchronously slipped faults intersect at angles of 0 to ∼55°, with the opening angles of fault intersections directed toward the dilational quadrants for dextral slip. Multistranded rupture on a fault network instead of rupture of a single fault may result in greater and/or more variable slip and cause slip rake to vary spatially and temporally. Slip on intersecting faults unequivocally means that there will be motion perpendicular to the average fault plane. Modern earthquakes displaying non‐double‐couple components to focal mechanism solutions and spatially varying rake, slip, and anomalous stress drop may be explained by rupture across fault networks that are too close (spatially and temporally) to be resolved seismically as separate events.
Ice at depth in ice-stream shear margins is thought to commonly be temperate, with interstitial meltwater that softens ice. Models that include this softening extrapolate results of a single experimental study in which ice effective viscosity decreased by a factor of ∼3 over water contents of ∼0.01–0.8%. Modeling indicates this softening by water localizes strain in shear margins and through shear heating increases meltwater at the bed, enhancing basal slip. To extend data to higher water contents, we shear lab-made ice in confined compression with a large ring-shear device. Ice rings with initial mean grain sizes of 2–4 mm are kept at the pressure-melting temperature and sheared at controlled rates with peak stresses of ∼0.06–0.20 MPa, spanning most of the estimated shear-stress range in West Antarctic shear margins. Final mean grain sizes are 8–13 mm. Water content is measured by inducing a freezing front at the ice-ring edges, tracking its movement inward with thermistors, and fitting the data with solutions of the relevant Stefan problem. Results indicate two creep regimes, below and above a water content of ∼0.6%. Comparison of effective viscosity values in secondary creep with those of tertiary creep from the earlier experimental study indicate that for water contents of 0.2–0.6%, viscosity in secondary creep is about twice as sensitive to water content than for ice sheared to tertiary creep. Above water contents of 0.6%, viscosity values in secondary creep are within 25% of those of tertiary creep, suggesting a stress-limiting mechanism at water contents greater than 0.6% that is insensitive to ice fabric development in tertiary creep. At water contents of ∼0.6–1.7%, effective viscosity is independent of water content, and ice is nearly linear-viscous. Minimization of intercrystalline stress heterogeneity by grain-scale melting and refreezing at rates that approach an upper bound as grain-boundary water films thicken might account for the two regimes.
Subduction plate boundaries host Earth's largest and most damaging earthquakes and tsunamis. Continuous geodetic and seismological monitoring has led to the relatively recent discovery of a spectrum of slip behaviors along tectonic faults globally, and particularly along subduction megathrusts (Beroza & Ide, 2011;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.