Background Periodontitis is one of the most common oral diseases and is a potential risk factor for systemic diseases. In this study, we aimed to investigate the association between periodontitis and learning and memory impairment. Methods We established a periodontitis model by topical application of Porphyromonas gingivalis lipopolysaccharide ( P. gingivalis -LPS) into the palatal gingival sulcus of the maxillary first molars of 10-week-old male rats for a 10-week period. We assessed alveolar bone resorption using micro–computed tomography analysis and learning and memory ability using the Morris water maze test. We determined the levels of cytokines [interleukin (IL)-1β, IL-6, IL-8, and IL-21] and LPS in the peripheral blood and cortex, as well as toll-like receptor 4 (TLR4)/NF-κB signaling pathway activation, using reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot. We determined activation of microglia and astrocytes, expression of Aβ1-42, APP and Tau by immunohistochemistry. Finally, we measured the expression of amyloid precursor protein (APP) and its key secretases, as well as the Aβ1-40/1-42 ratio, by RT-PCR, western blot, and ELISA. Results We found that periodontitis induced learning and memory impairment in the rats. Further, we observed that it induced significant alveolar bone resorption. There was an increase in the levels of inflammatory cytokines and LPS. Moreover, we confirmed TLR4/NF-κB signaling pathway activation. We also observed activated microglia and astrocytes with enlarged cell bodies and irregular protrusions. Finally, we observed the promotion of β- and γ-secretases APP processing. Conclusion Our findings indicated that periodontitis was associated with learning and memory impairment, probably induced by neuroinflammation via activating the TLR4/NF-κB signaling pathway. Furthermore, abnormal APP processing could be involved in this progress.
Background Increasing evidence suggests a causal link between periodontitis and cognitive disorders. Systemic inflammation initiated by periodontitis may mediate the development of cognitive impairment. Our study aims to investigate the effect of ligature-induced periodontitis on cognitive function and the role of signal transducers and activators of transcription 3 (STAT3) in this process. Materials and methods Ligature-induced periodontitis was established, and the rats were treated intraperitoneally with/without the pSTAT3 inhibitor cryptotanshinone (CTS). Alveolar bone resorption and periodontal inflammation were detected by micro-computed tomography analysis and histopathological evaluation. Locomotor activity and cognitive function were evaluated by the open field test and the Morris water maze test, respectively. The activation of microglia and astrocytes in the hippocampus and cortex was assessed by immunohistochemistry (IHC). The expression of interleukins (IL-1β, IL-6, IL-8, IL-21) in both the periphery and cortex was evaluated by RT-PCR and ELISA. The expression of TLR/NF-κB and ROS cascades was evaluated by RT-PCR. The expression of pSTAT3 and the activation of the STAT3 signaling pathway (JAK2, STAT3, and pSTAT3) in the periodontal tissue and cortex were assessed by IHC and Western blot. The expression of amyloid precursor protein (APP) and its key secretases was evaluated by RT-PCR. The level of amyloid β-protein (Aβ) and the ratio of Aβ1-40/1-42 were measured via ELISA in the plasma and cortex while IHC was used to detect the level of Aβ1-42 in the brain. Results In periodontal ligature rats, significant alveolar bone resorption and local inflammatory cell infiltration were present. Apparent increases in inflammatory cytokines (IL-1β, IL-6, IL-8, and IL-21) were detected in peripherial blood and brain. Additionally, spatial learning and memory ability was impaired, while locomotor activity was not affected. Activated microglia and astrocytes were found in the cortex and hippocampus, presenting as enlarged cell bodies and irregular protrusions. Levels of TLR/NF-kB, PPAR and ROS were altered. The STAT3 signaling pathway was activated in both the periodontal tissue and cortex, and the processing of APP by β- and γ-secretases was promoted. The changes mentioned above could be relieved by the pSTAT3 inhibitor CTS. Conclusions Ligature-induced periodontitis in rats resulted in systemic inflammation and further abnormal APP processing, leading to cognitive impairments. In this progress, the activation of the STAT3 signaling pathway may play an important role by increasing inflammatory load and promoting neuroinflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.