Mutations in genes involved in DNA methylation (DNAme; e.g.,
TET2, DNMT3A)
, are frequently observed in hematological malignancies
1
–
3
and clonal hematopoiesis
4
,
5
. Applying single-cell sequencing to murine hematopoietic stem and progenitor cells, we observed that these mutations disrupt hematopoietic differentiation, causing opposite shifts in the frequencies of erythroid vs. myelo-monocytic progenitors upon
Tet2
or
Dnmt3a
loss. Notably, these shifts trace back to transcriptional priming skews in uncommitted hematopoietic stem cells (HSCs). To reconcile genome-wide DNAme changes with specific erythroid vs. myelo-monocytic skews, we provide evidence in support of differential sensitivity of transcription factors due to biases in CpG enrichment in their binding motif. Single-cell transcriptomes with targeted genotyping showed similar skews in transcriptional priming of
DNMT3A
-mutated human clonal hematopoiesis bone marrow progenitors. These data show that DNAme shapes the hematopoietic differentiation topography, and support a model in which genome-wide methylation changes are transduced to differentiation skews through biases in transcription factor binding-motif CpG enrichment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.