Although patients with glioblastoma (GBM) have grave prognosis, significant variability in patient outcome is observed. This study aims to identify novel targets for GBM diagnosis and therapy. Microarray data (GSE4290, GSE7696, and GSE4412) obtained from the Gene Expression Omnibus was used to identify the differentially expressed genes (DEGs) by significant analysis of microarray (SAM). Intersection of the identified DEGs for each profile revealed 46 DEGs in GBM. A subset of common DEGs were validated by real-time reverse transcription quantitative PCR (qPCR). The prognostic value of some of the markers was also studied. We determined that RRM2 and COL3A1 were increased and directly correlated with glioma grade, while SH3GL2 and SNAP91 were decreased in GBM and inversely correlated with glioma grade. Kaplan-Meir analysis of GSE7696 revealed that COL3A1 and SNAP91 correlated with survival, suggesting that COL3A1 and SNAP91 may be suitable biomarkers for diagnostic or therapeutic strategies for GBM.
Despite the extensive role of Forkhead box transcription factors in the development and progression of various cancers, little is known about their role in glioma. We examined the expression and function of Forkhead box D1 (FOXD1) in glioma cell behavior and found that FOXD1 was upregulated and directly correlated with the glioma grade. Data analysis also revealed significant differences in FOXD1 expression for both gene expression profiles (GSE4290 and GSE7696) and the TCGA datasets. Additionally, decreased FOXD1 expression in U251 and U87 glioma cells caused a delay in cell growth and a disruption in colony formation. FOXD1 silencing also promoted generation of apoptotic bodies containing nuclear fragments. Cells with suppressed expression of FOXD1 markedly reduced glioma cell migration. Our results suggest that FOXD1 may serve as a novel regulator of glioblastoma cell behavior that may offer a novel target for gene targeted glioma therapies.
MicroRNA (miR)-138 was found to have suppressive effects on the growth and metastasis of different human cancers. In this study, we aimed to investigate the regulatory mechanism of miR-138 in non-small cell lung cancer (NSCLC). We applied the Quantitative real-time PCR (qRT-PCR) to detect the miR-138 levels in NSCLC tissues (n=21) and cell lines, Bioinformatical predication, luciferase reporter assay and western blot to identify the target gene of miR-138. We also applied Cell transfection, MTT, transwell, and wound healing assays to reveal the role of miR-138 in NSCLC cell proliferation and malignant transformation. We observed that miR-138 expression level was significantly decreased in NSCLC tissues compared to their matched adjacent normal tissues. It was also downregulated in tissues with poor differentiation, advanced stage or lymph nodes metastasis, as well as in several NSCLC cell lines compared to normal lung epithelial cell. We further identified YAP1 as a direct target gene of miR-138, and observed that the protein level of YAP1 was negatively mediated by miR-138 in NSCLC A549 cells. Moreover, overexpression of miR-138 significantly inhibited A549 cell growth, invasion and migration, while knockdown of miR-138 enhanced such capacities. Further investigation showed that the cell proliferation capacity was higher in the miR-138+YAP1 group, when compared with that in the miR-138 group, suggesting that overexpression of YAP1 rescued the suppressive effects of miR-138 upregulation on NSCLC cell proliferation. However, we found no difference of cell invasion and migration capacities between miR-138+YAP1 group and miR-138 group. Finally, YAP1 was markedly upregulated in NSCLC tissues compared to their marched adjacent normal tissues. Its mRNA levels were reversely correlated with the miR-138 levels in NSCLC tissues. In summary, our study suggests that miR-138 may play a suppressive role in the growth and metastasis of NSCLC cells partly at least by targeting YAP1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.