Despite recent progress in our understanding of the association between the gut microbiome and colorectal cancer (CRC), multi-kingdom gut microbiome dysbiosis in CRC across cohorts is unexplored. We investigated four-kingdom microbiota alterations using CRC metagenomic datasets of 1,368 samples from 8 distinct geographical cohorts. Integrated analysis identified 20 archaeal, 27 bacterial, 20 fungal and 21 viral species for each single-kingdom diagnostic model. However, our data revealed superior diagnostic accuracy for models constructed with multi-kingdom markers, in particular the addition of fungal species. Specifically, 16 multi-kingdom markers including 11 bacterial, 4 fungal and 1 archaeal feature, achieved good performance in diagnosing patients with CRC (area under the receiver operating characteristic curve (AUROC) = 0.83) and maintained accuracy across 3 independent cohorts. Coabundance analysis of the ecological network revealed associations between bacterial and fungal species, such as Talaromyces islandicus and Clostridium saccharobutylicum. Using metagenome shotgun sequencing data, the predictive power of the microbial functional potential was explored and elevated D-amino acid metabolism and butanoate metabolism were observed in CRC. Interestingly, the diagnostic model based on functional EggNOG genes achieved high accuracy (AUROC = 0.86). Collectively, our findings uncovered CRC-associated microbiota common across cohorts and demonstrate the applicability of multi-kingdom and functional markers as CRC diagnostic tools and, potentially, as therapeutic targets for the treatment of CRC.
The National Genomics Data Center (NGDC), part of the China National Center for Bioinformation (CNCB), provides a suite of database resources to support worldwide research activities in both academia and industry. With the explosive growth of multi-omics data, CNCB-NGDC is continually expanding, updating and enriching its core database resources through big data deposition, integration and translation. In the past year, considerable efforts have been devoted to 2019nCoVR, a newly established resource providing a global landscape of SARS-CoV-2 genomic sequences, variants, and haplotypes, as well as Aging Atlas, BrainBase, GTDB (Glycosyltransferases Database), LncExpDB, and TransCirc (Translation potential for circular RNAs). Meanwhile, a series of resources have been updated and improved, including BioProject, BioSample, GWH (Genome Warehouse), GVM (Genome Variation Map), GEN (Gene Expression Nebulas) as well as several biodiversity and plant resources. Particularly, BIG Search, a scalable, one-stop, cross-database search engine, has been significantly updated by providing easy access to a large number of internal and external biological resources from CNCB-NGDC, our partners, EBI and NCBI. All of these resources along with their services are publicly accessible at https://bigd.big.ac.cn.
The National Genomics Data Center (NGDC), part of the China National Center for Bioinformation (CNCB), provides a family of database resources to support global academic and industrial communities. With the explosive accumulation of multi-omics data generated at an unprecedented rate, CNCB-NGDC constantly expands and updates core database resources by big data archive, integrative analysis and value-added curation. In the past year, efforts have been devoted to integrating multiple omics data, synthesizing the growing knowledge, developing new resources and upgrading a set of major resources. Particularly, several database resources are newly developed for infectious diseases and microbiology (MPoxVR, KGCoV, ProPan), cancer-trait association (ASCancer Atlas, TWAS Atlas, Brain Catalog, CCAS) as well as tropical plants (TCOD). Importantly, given the global health threat caused by monkeypox virus and SARS-CoV-2, CNCB-NGDC has newly constructed the monkeypox virus resource, along with frequent updates of SARS-CoV-2 genome sequences, variants as well as haplotypes. All the resources and services are publicly accessible at https://ngdc.cncb.ac.cn.
M icroRNAs (miRNAs) are important regulators in gene expression. The dysregulation of miRNA expression is widely reported in the transformation from physiological to pathological states of cells. A large number of differentially expressed miRNAs (DEMs) have been identified in various human cancers by using high-throughput technologies, such as microarray and miRNA-seq. Through mining of published studies with high-throughput experiment information, the database of DEMs in human cancers (dbDEMC) was constructed with the aim of providing a systematic resource for the storage and query of the DEMs. Here we report an update of the dbDEMC to version 3.0, which contains two-fold more data entries than the second version and now includes also data from mice and rats. The dbDEMC 3.0 contains 3268 unique DEMs in 40 different cancer types. The current datasets for differential expression analysis have expanded to 9 generalized categories. Moreover, the current release integrates functional annotations of DEMs obtained by using experimentally validated targets. The annotations can be of great benefit to the intensive analysis of the roles of DEMs in cancer. In summary, dbDEMC 3.0 provides a valuable resource for characterizing molecular functions and regulatory mechanisms of DEMs in human cancers. The dbDEMC 3.0 is freely accessible at https://www.biosino.org/dbDEMC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.