In recent years, ternary halides Li3MX6 (M = Y, Er, In; X = Cl, Br, I) have garnered attention as solid electrolytes due to their wide electrochemical stability window and favorable roomtemperature conductivities. In this material class, the influences of iso-or aliovalent substitutions are so far rarely studied in-depth, despite this being a common tool for correlating structure and transport properties. In this work, we investigate the impact of Zr substitution on the structure and ionic conductivity of Li3InCl6 (Li3-xIn1-xZrxCl6 with 0 ≤ x ≤ 0.5) using a combination of neutron diffraction, nuclear magnetic resonance and impedance spectroscopy.Analysis of high-resolution diffraction data shows the presence of an additional tetrahedrally coordinated lithium position together with cation site-disorder, both of which have not been reported previously for Li3InCl6. This Li + position and cation disorder lead to the formation of a three-dimensional lithium ion diffusion channel, instead of the expected two-dimensional diffusion. Upon Zr 4+ substitution, the structure exhibits non-uniform volume changes along with an increasing number of vacancies, all of which lead to an increasing ionic conductivity in this series of solid solutions.
We report for the first time that the interfacial Si–N–C layer could stabilize the solid–electrolyte interphase of a cabon-coated mesoporous silicon particle anode and enable 100% capacity retention after 400 cycles at 0.1 A g−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.