Recently, infrared (IR) light-emitting diodes (LEDs) have attracted considerable interest in the research field worldwide. IR phosphors, the basic materials utilized in LEDs, have become a research hotspot as well. Here, we introduce the high-quantum-efficiency IR ScBO 3 :Cr 3+ phosphor, which provides a spectral range of emission from 700 to 1000 nm with a peak maximum at 800 nm. Electron paramagnetic resonance spectroscopy, with high element selectivity, was used to elucidate the unusual small peak in the photoluminescence spectrum. Phonon structure and electron−lattice interaction were well observed and discussed via temperature-dependent measurements. Moreover, the high quantum efficiency of 72.8% was achieved. To evaluate their potential practical application, phosphor-converted LED packages were designed, which revealed high stability and high output power of 39.11 mW. Furthermore, the fabricated IR LED demonstrated a remarkable ability to penetrate biological tissues. This study provides insights into the luminescent properties and the practical applications of IR LEDs.
We aim to conduct a complete study on the unexpected structure evolution behavior in Cr 3+ -doped phosphors. A series of Ga 2−x Sc x O 3 :Cr 3+ phosphors are successfully synthesized and confirmed through structural studies, while the lattice parameters change unexpectedly. The unique partial substitution (∼87%) of Sc 3+ in the octahedral site is demonstrated via Rietveld refinement. Therefore, the bond valence sum calculation explains the reason for this particular Sc 3+ concentration. The photoluminescent bandwidth and electron−lattice coupling energy initially increase and then decrease, implying an inhomogeneous broadening effect. Time-resolved spectra and electron paramagnetic resonance are utilized to further examine the subtle change in the microstructures and the second coordination sphere effect of Cr 3+ . Ga 1.594 Sc 0.4 O 3 :0.006Cr 3+ exhibits high internal quantum efficiency (99%) and high phosphor-converted light-emitting diode output power (66.09 mW), demonstrating its capability as an outstanding infrared phosphor. This work will motivate further research on unexpected partial substitution during the solid solution process.
Phosphor-converted light-emitting diodes (LEDs) have recently become a promising candidate for next-generation agricultural and horticultural-use devices. In principle, they can overcome the limitations of regular daily sunshine. Here, the principle...
Complementary coordination of two predesigned 2,2':6',2″-terpyridine-based ligands to a Zn ion led to the exclusive formation of a heteroleptic bis(terpyridine) complex under ambient conditions. This highly self-selective process was facilitated by 9-anthracenyl substituents at the 6,6″-positions of a terpyridine, which not only decelerated the formation rate of its homoleptic complex, but also provided π-stacking stabilization in the heteroleptic complex. Facile construction of metallo-supramolecular poly(3-hexylthiophene) (P3HT)-block-poly(ethylene oxide) (PEO) diblock copolymers was realized using the complementary ligand pair. The morphological studies of the amphiphilic block copolymers in solution were conducted by atomic force microscopy and transmission electron microscopy, indicating that the self-assembled core-shell morphology such as spherical and fibrillar nanostructures could be controlled by adjusting the rod-coil block ratios. The heteroleptic complexes residing at the junction between two polymer blocks could be readily dissociated by EDTA to afford the unshelled P3HT nanofiber networks, and restored by treatment of bifunctional Zn-terpyridine-capped PEO to redisperse the aggregates. The presented supramolecular methodology highlights the merits of complementary metal-ligand coordination, and offers a new approach to engineering nanostructures assembled from rod-coil block copolymers.
TpRuPPh 3 (CH 3 CN) 2 PF 6 (3 mol %) was very active in catalytic benzannulation of 1-phenyl-2-ethynylbenzenes in dichloroethane (60 °C, 36 h) to afford phenanthrene in 95% yield. This method is applicable to the synthesis of various polycyclic aromatic hydrocarbons via two-and four-fold benzannulations, including various substituted coronene derivatives (53-86% yields) using this catalyst at a moderate loading (10 mol %).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.