To better understand the mechanism(s) underlying lung cancer invasion and metastasis, a Transwell invasion chamber was used to select progressively more invasive cancer cell populations from a clonal cell line of human lung adenocarcinoma, CL1. Five sublines with progressive invasiveness, designated CL1-1, CL1-2, CL1-3, CL1-4, and CL1-5, were obtained through this in vitro selection process. Their invasive abilities through basement membrane matrix showed a 4- to 6-fold increase over that of the parental cells. Moreover, the sublines manifested an increase in their colony-forming ability on soft agar, tumorigenicity, and metastatic potency in severe combined immunodeficiency (SCID) mice. Examining the phenotypes of the cell lines revealed increased expression of 92 kD gelatinase and an increase in the cell population stained with anti-keratin-8 and -18 antibodies. Clonal isolation of anti-keratin-18-antibody-positive and -negative cell populations demonstrated a correlated enhancement of the invasiveness of these cells and their expression of keratin-18. These results support the notion that the metastatic behavior of lung cancer cells can be characterized with this in vitro system, and that the properties of these progressively invasive cancer cells can be clonally studied.
p53, the most commonly mutated gene in cancer cells, directs cell cycle arrest or induces programmed cell death (apoptosis) in response to stress. It has been demonstrated that p53 activity is up-regulated in part by posttranslational acetylation. In agreement with these observations, here we show that mammalian histone deacetylase (HDAC)-1, -2, and -3 are all capable of downregulating p53 function. Down-regulation of p53 activity by HDACs is HDAC dosage-dependent, requires the deacetylase activity of HDACs, and depends on the region of p53 that is acetylated by p300/CREB-binding protein (CBP). These results suggest that interactions of p53 and HDACs likely result in p53 deacetylation, thereby reducing its transcriptional activity. In support of this idea, GST pull-down and immunoprecipitation assays show that p53 interacts with HDAC1 both in vitro and in vivo. Furthermore, a pre-acetylated p53 peptide was significantly deacetylated by immunoprecipitated wild type HDAC1 but not deacetylase mutant. Also, coexpression of HDAC1 greatly reduced the in vivo acetylation level of p53. Finally, we report that the activation potential of p53 on the BAX promoter, a natural p53-responsive system, is reduced in the presence of HDACs. Taken together, our findings indicate that deacetylation of p53 by histone deacetylases is likely to be part of the mechanisms that control the physiological activity of p53.
MicroRNAs (miRNA) mediate distinct gene regulatory pathways triggered by epidermal growth factor receptor (EGFR) activation, which occurs commonly in lung cancers with poor prognosis. In this study, we report the discovery and mechanistic characterization of the miRNA miR-7 as an oncogenic "oncomiR" and its role as a key mediator of EGFR signaling in lung cancer cells. EGFR activation or ectopic expression of Ras as well as c-Myc stimulated miR-7 expression in an extracellular signal-regulated kinase (ERK)-dependent manner, suggesting that EGFR induces miR-7 expression through a Ras/ERK/Myc pathway. In support of this likelihood, c-Myc bound to the miR-7 promoter and enhanced its activity. Ectopic miR-7 promoted cell growth and tumor formation in lung cancer cells, significantly increasing the mortality of nude mice hosts, which were orthotopically implanted with lung cancers. Quantitative proteomic analysis revealed that miR-7 decreased levels of the Ets2 transcriptional repression factor ERF, the coding sequence of which was found to contain a miR-7 complementary sequence. Indeed, ectopic miR-7 inhibited production of ERF messages with a wild-type but not a silently mutated coding sequence, and ectopic miR-7 rescued growth arrest produced by wild-type but not mutated ERF. Together, these results identified that ERF is a direct target of miR-7 in lung cancer. Our findings suggest that miR-7 may act as an important modulator of EGFRmediated oncogenesis, with potential applications as a novel prognostic biomarker and therapeutic target in lung cancer. Cancer Res; 70(21); 8822-31. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.