Host defense systems employ posttranslational modifications to protect against invading pathogens. Here, we found that protein inhibitor of activated STAT 1 (PIAS1) interacts with the nucleoprotein (NP), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) of influenza A virus (IAV). Lentiviral-mediated stable overexpression of PIAS1 dramatically suppressed the replication of IAV, whereas siRNA knockdown or CRISPR/Cas9 knockout of PIAS1 expression significantly increased virus growth. The expression of PIAS1 was significantly induced upon IAV infection in both cell culture and mice, and PIAS1 was involved in the overall increase in cellular SUMOylation induced by IAV infection. We found that PIAS1 inhibited the activity of the viral RNP complex, whereas the C351S or W372A mutant of PIAS1, which lacks the SUMO E3 ligase activity, lost the ability to suppress the activity of the viral RNP complex. Notably, the SUMO E3 ligase activity of PIAS1 catalyzed robust SUMOylation of PB2, but had no role in PB1 SUMOylation and a minimal role in NP SUMOylation. Moreover, PIAS1-mediated SUMOylation remarkably reduced the stability of IAV PB2. When tested in vivo, we found that the downregulation of PIAS1 expression in mice enhanced the growth and virulence of IAV. Together, our findings define PIAS1 as a restriction factor for the replication and pathogenesis of IAV.
As a major component of the viral ribonucleoprotein (vRNP) complex in influenza A virus (IAV), nucleoprotein (NP) interacts with isoforms of importin α family members, leading to the import of itself and vRNP complex into the nucleus, a process pivotal in the replication cycle of IAV. In this study, we found that BinCARD1, an isoform of Bcl10-interacting protein with CARD (BinCARD), was leveraged by IAV for efficient viral replication. BinCARD1 promoted the nuclear import of the vRNP complex and newly synthesized NP and thus enhanced vRNP complex activity. Moreover, we found that BinCARD1 interacted with NP to promote NP binding to importin α7, an adaptor in the host nuclear import pathway. However, we also found that BinCARD1 promoted RIG-I-mediated innate immune signaling by mediating Lys63-linked polyubiquitination of TRAF3, and that TBK1 appeared to degrade BinCARD1. We showed that BinCARD1 was polyubiquitinated at residue K103 through a Lys63 linkage, which was recognized by the TBK1-p62 axis for autophagic degradation. Overall, our data demonstrate that IAV leverages BinCARD1 as an important host factor that promotes viral replication, and two mechanisms in the host defense system are triggered—innate immune signaling and autophagic degradation—to mitigate the promoting effect of BinCARD1 on the life cycle of IAV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.