SummaryBackgroundWe have previously estimated that respiratory syncytial virus (RSV) was associated with 22% of all episodes of (severe) acute lower respiratory infection (ALRI) resulting in 55 000 to 199 000 deaths in children younger than 5 years in 2005. In the past 5 years, major research activity on RSV has yielded substantial new data from developing countries. With a considerably expanded dataset from a large international collaboration, we aimed to estimate the global incidence, hospital admission rate, and mortality from RSV-ALRI episodes in young children in 2015.MethodsWe estimated the incidence and hospital admission rate of RSV-associated ALRI (RSV-ALRI) in children younger than 5 years stratified by age and World Bank income regions from a systematic review of studies published between Jan 1, 1995, and Dec 31, 2016, and unpublished data from 76 high quality population-based studies. We estimated the RSV-ALRI incidence for 132 developing countries using a risk factor-based model and 2015 population estimates. We estimated the in-hospital RSV-ALRI mortality by combining in-hospital case fatality ratios with hospital admission estimates from hospital-based (published and unpublished) studies. We also estimated overall RSV-ALRI mortality by identifying studies reporting monthly data for ALRI mortality in the community and RSV activity.FindingsWe estimated that globally in 2015, 33·1 million (uncertainty range [UR] 21·6–50·3) episodes of RSV-ALRI, resulted in about 3·2 million (2·7–3·8) hospital admissions, and 59 600 (48 000–74 500) in-hospital deaths in children younger than 5 years. In children younger than 6 months, 1·4 million (UR 1·2–1·7) hospital admissions, and 27 300 (UR 20 700–36 200) in-hospital deaths were due to RSV-ALRI. We also estimated that the overall RSV-ALRI mortality could be as high as 118 200 (UR 94 600–149 400). Incidence and mortality varied substantially from year to year in any given population.InterpretationGlobally, RSV is a common cause of childhood ALRI and a major cause of hospital admissions in young children, resulting in a substantial burden on health-care services. About 45% of hospital admissions and in-hospital deaths due to RSV-ALRI occur in children younger than 6 months. An effective maternal RSV vaccine or monoclonal antibody could have a substantial effect on disease burden in this age group.FundingThe Bill & Melinda Gates Foundation.
SARS-CoV-2 501Y.V2 (B.1.351), a novel lineage of coronavirus causing COVID-19, contains substitutions in two immunodominant domains of the spike protein. Here, we show that pseudovirus expressing 501Y.V2 spike protein completely escapes three classes of therapeutically relevant antibodies. This pseudovirus also exhibits substantial to complete escape from neutralization, but not binding, by convalescent plasma. These data highlight the prospect of reinfection with antigenically distinct variants and foreshadows reduced efficacy of spike-based vaccines. Individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), develop neutralizing antibodies that can persist for months 1,2. Neutralizing antibodies are considered the primary correlate of protection from infection and are being pursued as therapeutics 3,4. Interim analyses with monoclonal neutralizing antibodies have shown success, facilitating their authorization for emergency use 5,6. The SARS-CoV-2 receptor binding domain (RBD) exists in either an 'up' (receptor-accessible) or 'down' (receptor-shielded) conformation. RBD is the dominant neutralization target for this and other human coronaviruses 7,8. These antibodies can be broadly divided into four main classes, of which two overlap with the angiotensin converting enzyme 2 (ACE2) receptor binding site (Fig. 1a and Supplementary Fig. 1a) 9. Class 1 antibodies are most frequently elicited in SARS-CoV-2 infection and include a public antibody response to an epitope only accessible in the RBD 'up' conformation 10. Class 2 antibodies use more diverse VH-genes and bind to RBD 'up' and RBD 'down' conformations of spike. After RBD, the N-terminal domain (NTD) of spike is the next most frequently targeted by neutralizing antibodies, most of which target a single immunodominant site 11. We, and others, recently described a new SARS-CoV-2 lineage in South Africa, defined as Nextstrain clade 20H/501Y.V2 (PANGOLin lineage B.1.351) 12. This lineage is defined by nine
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.