This paper is the primary deliverable of the very first NASA Living With a Star Institute Working Group, Geomagnetically Induced Currents (GIC) Working Group. The paper provides a broad overview of the current status and future challenges pertaining to the science, engineering, and applications of the GIC problem. Science is understood here as the basic space and Earth sciences research that allows improved understanding and physics‐based modeling of the physical processes behind GIC. Engineering, in turn, is understood here as the “impact” aspect of GIC. Applications are understood as the models, tools, and activities that can provide actionable information to entities such as power systems operators for mitigating the effects of GIC and government agencies for managing any potential consequences from GIC impact to critical infrastructure. Applications can be considered the ultimate goal of our GIC work. In assessing the status of the field, we quantify the readiness of various applications in the mitigation context. We use the Applications Readiness Level (ARL) concept to carry out the quantification.
A key goal for space weather studies is to define severe and extreme conditions that might plausibly afflict human technology. On 23 July 2012, solar active region 1520 (~141°W heliographic longitude) gave rise to a powerful coronal mass ejection (CME) with an initial speed that was determined to be 2500 ± 500 km/s. The eruption was directed away from Earth toward 125°W longitude. STEREO‐A sensors detected the CME arrival only about 19 h later and made in situ measurements of the solar wind and interplanetary magnetic field. In this paper, we address the question of what would have happened if this powerful interplanetary event had been Earthward directed. Using a well‐proven geomagnetic storm forecast model, we find that the 23–24 July event would certainly have produced a geomagnetic storm that was comparable to the largest events of the twentieth century (Dst ~ −500 nT). Using plausible assumptions about seasonal and time‐of‐day orientation of the Earth's magnetic dipole, the most extreme modeled value of storm‐time disturbance would have been Dst = −1182 nT. This is considerably larger than estimates for the famous Carrington storm of 1859. This finding has far reaching implications because it demonstrates that extreme space weather conditions such as those during March of 1989 or September of 1859 can happen even during a modest solar activity cycle such as the one presently underway. We argue that this extreme event should immediately be employed by the space weather community to model severe space weather effects on technological systems such as the electric power grid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.