9589 Background: KRAS mutations are one of the common oncogene drivers in non-small cell lung cancer (NSCLC), and the development of several targeted drugs for KRAS-mutated NSCLC is now ongoing. However, the clinical impact of KRAS mutation subtypes or concomitant other gene mutations in NSCLC patients (pts) remains unclear. Methods: In a nationwide genomic screening project (LC-SCRUM-Japan), we have prospectively analyzed lung cancer pts for genetic alterations and tumor mutation burden (TMB) by next-generation sequencing system, and for PD-L1 expression by immunohistochemistry (22C3 antibody). The therapeutic efficacy and survival of KRAS-mutated non-squamous (non-sq) NSCLC pts were evaluated using a clinico-genomic database of the LC-SCRUM-Japan. Results: A total of 5166 non-sq NSCLC pts enrolled from 2015 to 2019. KRAS mutations were detected in 794 pts (15%; G12C/G12D/G12V/G12A/G13X/others = 232/186/165/66/61/84). Among the 794 pts, TMB and PD-L1 expression were analyzed in 128 and 79, respectively, and 218 received PD-1/PD-L1 inhibitors (IO) after 1st-line chemotherapy. The median age was 66 years (range, 29-89). 142 pts (65%) were male and 172 (78%) were smokers. Concomitant STK11 mutations were detected in 33 pts (15%) with no difference in the mutation frequency among KRAS mutation subtypes. KRAS G12C was significantly associated with high TMB (≥ 10 mut/Mb) (p = 0.03), and KRAS G12C or G12V with high PD-L1 expression (≥ 50%) (p = 0.02). In pts who received IO, median progression-free survival (mPFS) was significantly longer in pts with KRAS G12C or G12V than in those with other KRAS mutations (4.7 vs 2.0 months, hazard ratio (HR) 0.58 [95%CI 0.43-0.78], p < 0.01). Among pts with KRAS G12C or G12V, mPFS of IO was significantly shorter in pts with concomitant STK11 mutations than in those without (1.8 vs. 5.7 months, HR 1.97 [95%CI 1.06-3.41], p = 0.02). These correlations were not observed in platinum-containing chemotherapy (Plt-CTx). There were also no significant differences in IO and Plt-CTx efficacies between with and without other concomitant mutations, such as TP53, RB1, CDKN2A and PTEN mutations. Conclusions: Non-sq NSCLC pts with KRAS G12C/V were more sensitive to IO therapies than those with other KRAS mutations, but KRAS G12C/V-positive pts with concomitant STK11 mutations were less sensitive than those without. These results could be highly informative in the development of novel targeted therapies for KRAS-mutated NSCLC.
IntroductionThere is no established clinical prediction model for in-hospital death among patients with pneumonic chronic obstructive pulmonary disease (COPD) exacerbation. We aimed to externally validate BAP-65 and CURB-65 and to develop a new model based on the eXtreme Gradient Boosting (XGBoost) algorithm.MethodsThis multicentre cohort study included patients aged ≥40 years with pneumonic COPD exacerbation. The input data were age, sex, activities of daily living, mental status, systolic and diastolic blood pressure, respiratory rate, heart rate, peripheral blood eosinophil count, and blood urea nitrogen. The primary outcome was in-hospital death. BAP-65 and CURB-65 underwent external validation using the area under the receiver operating characteristic curve (AUROC) in the whole dataset. We used XGBoost to develop a new prediction model. We compared the AUROCs of XGBoost with that of BAP-65 and CURB-65 in the test dataset using bootstrap sampling.ResultsWe included 1190 patients with pneumonic COPD exacerbation. The in-hospital mortality was 7% (88/1190). In the external validation of BAP-65 and CURB-65, the AUROCs (95% confidence interval [CI]) of BAP-65 and CURB-65 were 0.69 (0.66–0.72, and 0.69 (0.66–0.72), respectively. XGBoost showed an AUROC of 0.71 (0.62–0.81) in the test dataset. There was no significant difference in the AUROCs of XGBoost versus BAP-65 (absolute difference, 0.054; 95% CI, −0.057–0.16) or versus CURB-65 (absolute difference, 0.0021; 95% CI, −0.091–0.088).ConclusionBAP-65, CURB-65, and XGBoost showed low predictive performance for in-hospital death in pneumonic COPD exacerbation. Further large-scale studies including more variables are warranted.
To date, no consensus exists on the effects of systemic steroid use on pneumonic chronic obstructive pulmonary disease (COPD) exacerbation owing to trial design issues in previous trials involving these conditions. This multicenter study aimed to evaluate more precisely the effectiveness of the use of systemic steroids in treating pneumonic COPD exacerbation in a larger sample by adjusting for confounding factors. Patients and Methods: This multicenter, retrospective, observational study was conducted across five acute general hospitals in Japan. We analyzed the association between parenteral/ oral steroid therapy and time to clinical stability in pneumonic COPD exacerbation. We used a validated algorithm derived from the 10th revision of the International Classification of Diseases and Related Health Problems (ICD-10) to include patients with pneumonic COPD exacerbation. We excluded patients with other hypoxia causes (asthma exacerbation, pneumothorax, heart failure) and complicated pneumonia (obstructive pneumonia, empyema), those who required tracheal intubation/vasopressors, and those who were clinically stable on day of admission. The primary outcome was the time to clinical stability. Multiple imputation was used for missing data. Propensity scores within each imputed dataset were calculated using potential confounding factors. The Fine and Gray model was used within each dataset to account for the competing risk of death and hospital discharge without clinical stability, and we combined the results. Results: Altogether, 1237 patients were included. Systemic steroid therapy was administered to 658 patients (53%). The pooled estimated subdistribution hazard ratio of time to clinical stability in steroid vs non-steroid users was 0.89 (95% confidence interval, 0.78 to 1.0). Conclusion: This study revealed that systemic steroid therapy may not improve the time to clinical stability in patients with pneumonic COPD exacerbation of mild to moderate severity. Further randomized controlled trials including more severe patients will be needed to evaluate the effectiveness of systemic steroid therapy accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.