Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor prognosis and limited therapeutic options. The incidence of IPF increases with age, and ageing-related mechanisms such as cellular senescence have been proposed as pathogenic drivers. The lung alveolar epithelium represents a major site of tissue injury in IPF and senescence of this cell population is probably detrimental to lung repair. However, the potential pathomechanisms of alveolar epithelial cell senescence and the impact of senolytic drugs on senescent lung cells and fibrosis remain unknown. Here we demonstrate that lung epithelial cells exhibit increased P16 and P21 expression as well as senescence-associated β-galactosidase activity in experimental and human lung fibrosis tissue and primary cells.Primary fibrotic mouse alveolar epithelial type (AT)II cells secreted increased amounts of senescence-associated secretory phenotype (SASP) factors in vitro, as analysed using quantitative PCR, mass spectrometry and ELISA. Importantly, pharmacological clearance of senescent cells by induction of apoptosis in fibrotic ATII cells or ex vivo three-dimensional lung tissue cultures reduced SASP factors and extracellular matrix markers, while increasing alveolar epithelial markers.These data indicate that alveolar epithelial cell senescence contributes to lung fibrosis development and that senolytic drugs may be a viable therapeutic option for IPF.
RationaleThe influence of COPD exacerbation on the endothelium is not completely understood. Circulating endothelial microparticles (EMPs) are membrane vesicles in circulating blood that are shed by activated or apoptotic endothelial cells. Objective To compare EMP numbers in stable COPD patients with those during and after exacerbation. Methods We examined the EMP numbers in 80 stable COPD patients, 27 patients with exacerbated COPD, and 20 healthy non-COPD volunteers. EMPs were defined as CD144+ MPs (VE-cadherin EMPs), CD31+/CD41À MPs (PECAM EMPs), CD146 MPs (MCAM EMPs) and CD62E + EMPs (E-selectin EMPs) as analysed by FACS. Von Willebrand factor (vWF) expression was utilised to identify the origins of the EMPs. Results VE-cadherin, PECAM and E-selectin EMP numbers were significantly higher in the stable COPD patients than in the non-COPD volunteers, and they were significantly higher in the patients with exacerbated COPD than in the stable COPD patients. The majority of these increased EMPs were vWF-negative, indicating a pulmonary capillary origin. Baseline E-selectin EMP levels were significantly higher in COPD patients who experienced frequent exacerbations than in those who did not have frequent exacerbations (p<0.001). Twenty-eight days after the onset of exacerbation, E-selectin EMP levels returned to those observed in stable COPD patients, whereas PECAM EMP levels remained high. MCAM EMP numbers were not elevated in stable or exacerbated-COPD patients. Conclusions Endothelial damage, mainly in pulmonary capillaries, occurs during exacerbation and continues even after clinical symptoms disappear. Higher baseline E-selectin EMP levels may indicate COPD patients who are susceptible to exacerbation.
Recent advances in 3D bioprinting allow for generating intricate structures with dimensions relevant for human tissue, but suitable bioinks for producing translationally relevant tissue with complex geometries remain unidentified. Here, a tissue‐specific hybrid bioink is described, composed of a natural polymer, alginate, reinforced with extracellular matrix derived from decellularized tissue (rECM). rECM has rheological and gelation properties beneficial for 3D bioprinting while retaining biologically inductive properties supporting tissue maturation ex vivo and in vivo. These bioinks are shear thinning, resist cell sedimentation, improve viability of multiple cell types, and enhance mechanical stability in hydrogels derived from them. 3D printed constructs generated from rECM bioinks suppress the foreign body response, are pro‐angiogenic and support recipient‐derived de novo blood vessel formation across the entire graft thickness in a murine model of transplant immunosuppression. Their proof‐of‐principle for generating human tissue is demonstrated by 3D bioprinting human airways composed of regionally specified primary human airway epithelial progenitor and smooth muscle cells. Airway lumens remained patent with viable cells for one month in vitro with evidence of differentiation into mature epithelial cell types found in native human airways. rECM bioinks are a promising new approach for generating functional human tissue using 3D bioprinting.
BackgroundIdiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Repetitive injury and reprogramming of the lung epithelium are thought to be critical drivers of disease progression, contributing to fibroblast activation, extracellular matrix remodeling, and subsequently loss of lung architecture and function. To date, Pirfenidone and Nintedanib are the only approved drugs known to decelerate disease progression, however, if and how these drugs affect lung epithelial cell function, remains largely unexplored.MethodsWe treated murine and human 3D ex vivo lung tissue cultures (3D-LTCs; generated from precision cut lung slices (PCLS)) as well as primary murine alveolar epithelial type II (pmATII) cells with Pirfenidone or Nintedanib. Murine 3D-LTCs or pmATII cells were derived from the bleomycin model of fibrosis. Early fibrotic changes were induced in human 3D-LTCs by a mixture of profibrotic factors. Epithelial and mesenchymal cell function was determined by qPCR, Western blotting, Immunofluorescent staining, and ELISA.ResultsLow μM concentrations of Nintedanib (1 μM) and mM concentrations of Pirfenidone (2.5 mM) reduced fibrotic gene expression including Collagen 1a1 and Fibronectin in murine and human 3D-LTCs as well as pmATII cells. Notably, Nintedanib stabilized expression of distal lung epithelial cell markers, especially Surfactant Protein C in pmATII cells as well as in murine and human 3D-LTCs.ConclusionsPirfenidone and Nintedanib exhibit distinct effects on murine and human epithelial cells, which might contribute to their anti-fibrotic action. Human 3D-LTCs represent a valuable tool to assess anti-fibrotic mechanisms of potential drugs for the treatment of IPF patients.Electronic supplementary materialThe online version of this article (10.1186/s12931-018-0876-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.