Skeletal muscle atrophy caused by unloading is characterized by both decreased responsiveness to myogenicThe impairment of growth factor signaling is a near-universal feature of skeletal myopathies induced by unloading (6, 13). Clinical trials have established that during unloading, muscle tissue fails to respond to IGF-1, a dominant myotrophic hormone (7,19,34). Under normal conditions and in response to hypertrophic stimuli, IGF-1 promotes muscle growth and suppresses muscle loss largely through the Akt-dependent phosphorylation and cytosolic sequestration of FOXO transcription factors in skeletal myocytes, which leads to the inhibition of FOXO-dependent gene expression (38, 41). In contrast, IGF-1-dependent Akt signaling is impaired during muscle atrophy, which decreases the phosphorylation and increases the transactivation of FOXO target genes. In particular, FOXO regulates the expression of atrophy-related genes (atrogenes) that encode atrogin-1/MAFbx and MuRF-1, which are RING-type ubiquitin ligases that are critical mediators of atrophic myopathies in vivo (3,14). Atrogin-1 and MuRF-1 regulate the degradation of key proteins involved in striated muscle growth and differentiation, including MyoD, calcineurin, and troponin-I (24, 27, 47). Although diminished growth factor responsiveness and enhanced proteolysis both are major atrophyrelated processes, the mechanisms by which skeletal muscle becomes refractory to the trophic actions of muscle growth factors during unloading are not well defined.In a previous study designed to evaluate changes in skeletal muscle gene expression in rats exposed to a 16-day spaceflight (30), we identified novel potential atrogenes (37) using microarray analysis. The response of skeletal muscle to mechanical stress is accompanied by marked alterations in atrogene expression, and we showed that microgravity induces Siah-1A, MuRF-1 (30), and atrogin-1 (see Table S1 in the supplemental material). Microgravity also resulted in the increased expression of Cbl-b (greater than eightfold). Cbl-b is another RING-type ubiquitin ligase previously established as a negative regulator of receptor tyrosine kinase signaling in a variety of cells (23,45). These results complement our recent finding that Cbl-b downregulates bone formation
Intact osteoactivin, a novel type I membrane glycoprotein, were shed at a dibasic motif in the juxtamembrane region in C2C12 myoblasts. Extracellular fragments were secreted into the culture media by a putative metalloprotease. Extracellular fragments of osteoactivin, but not control protein, induced matrix metalloprotease-3 (MMP-3) expression in NIH-3T3 fibroblasts. Epidermal growth factor (ERK) kinase inhibitors inhibited the osteoactivin-mediated MMP-3 expression, whereas the extracellular fragment of osteoactivin activated ERK1/2 and p38 in the mitogen-activated protein kinase pathway. Our results suggest that the extracellular fragments of osteoactivin produced by shedding act as a growth factor to induce MMP-3 expression via the ERK pathway in fibroblasts.
The Ral GTPase is activated by RalGDS, which is one of the effector proteins for Ras. Previous studies have suggested that Ral might function to regulate the cytoskeleton; however, its in vivo function is unknown. We have identified a Drosophila homologue of Ral that is widely expressed during embryogenesis and imaginal disc development. Two mutant Drosophila Ral (DRal) proteins, DRalG20V and DRalS25N, were generated and analyzed for nucleotide binding and GTPase activity. The biochemical analyses demonstrated that DRalG20V and DRalS25N act as constitutively active and dominant negative mutants, respectively. Overexpression of the wild-type DRal did not cause any visible phenotype, whereas DRalG20V and DRalS25N mutants caused defects in the development of various tissues including the cuticular surface, which is covered by parallel arrays of polarized structures such as hairs and sensory bristles. The dominant negative DRal protein caused defects in the development of hairs and bristles. These phenotypes were genetically suppressed by loss of function mutations of hemipterous and basket, encoding Drosophila Jun NH2-terminal kinase kinase (JNKK) and Jun NH2-terminal kinase (JNK), respectively. Expression of the constitutively active DRal protein caused defects in the process of dorsal closure during embryogenesis and inhibited the phosphorylation of JNK in cultured S2 cells. These results indicate that DRal regulates developmental cell shape changes through the JNK pathway.
Unloading can prevent bone formation by osteoblasts. To study this mechanism, we focused on a ubiquitin ligase, Cbl-b, which was highly expressed in osteoblastic cells during denervation. Our results suggest that Cbl-b may mediate denervation-induced osteopenia by inhibiting IGF-I signaling in osteoblasts.Introduction: Unloading, such as denervation (sciatic neurectomy) and spaceflight, suppresses bone formation by osteoblasts, leading to osteopenia. The resistance of osteoblasts to growth factors contributes to such unloading-mediated osteopenia. However, a detailed mechanism of this resistance is unknown. We first found that a RING-type ubiquitin ligase, Cbl-b, was highly expressed in osteoblastic cells after sciatic neurectomy in mice. In this study, we reasoned that Cbl-b played an important role in the resistance of osteoblasts to IGF-I. Materials and Methods: Cbl-b-deficient (Cbl-b
We studied the role of Ras signaling in the regulation of cell death during Drosophila eye development. Overexpression of Argos, a diffusible inhibitor of the EGF receptor and Ras signaling, caused excessive cell death in developing eyes at pupal stages. The Argos-induced cell death was suppressed by coexpression of the anti-apoptotic genes p35, diap1, or diap2 in the eye as well as by the Df(3L)H99 chromosomal deletion that lacks three apoptosis-inducing genes, reaper, head involution defective (hid) and grim. Transient misexpression of the activated Ras1 protein (Ras1 V12 ) later in pupal development suppressed the Argos-induced cell death. Thus, Argos-induced cell death seemed to have resulted from the suppression of the anti-apoptotic function of Ras. Conversely, cell death induced by overexpression of Hid was suppressed by gain-of-function mutations of the genes coding for MEK and ERK. These results support the idea that Ras signaling functions in two distinct processes during eye development, first triggering the recruitment of cells and later negatively regulating cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.