To clarify the serological relationship of Peanut chlorotic fan-spot virus (PCFV) with other tospoviruses, antisera were produced against the nucleocapsid (N) proteins of this virus and tospoviruses from four serogroups including Tomato spotted wilt virus (TSWV), Impatiens necrotic spot virus (INSV), Groundnut ringspot virus (GRSV), and Watermelon silver mottle virus (WSMoV). In immunodiffusion tests, the antisera only reacted with their homologous antigens. Similar results were noticed in indirect enzyme-linked immunosorbent assay and immunoblot tests, with the exception that strong cross-reactions were observed in heterologous combinations between TSWV and GRSV. The results indicated that the N protein of PCFV is not serologically related to those of the tospoviruses from the four serogroups. To further characterize the virus, viral S double-stranded RNA was extracted from PCFV-infected Chenopodium quinoa and used for cDNA cloning and sequencing. The full-length viral strand of the S RNA was determined to be 2,833 nucleotides, with an inverted repeat at the 5' and 3' ends and two open reading frames in an ambisense arrangement. The 3'-terminal sequence (5'-AUUGCUCU-3') of the viral S RNA is identical to those of other tospoviruses, indicating that PCFV belongs to the genus Tospovirus. The N and the NSs proteins of PCFV share low amino acid identities (22.3 to 67.5% and 19.3 to 54.2%) with those of reported tospoviruses, respectively. The phylogenetic dendrogram of the N gene of PCFV compared with those of other tospoviruses indicates that PCFV is distinct from other tospoviruses. In hybridization analyses, an N gene cDNA probe of PCFV did not react with viral RNAs of TSWV, GRSV, INSV, and WSMoV, and vice versa. Thus, based on these results, we conclude that PCFV is a new tospovirus species.
Age-related macular degeneration (AMD) leads to gradual central vision loss and is the third leading cause of irreversible blindness worldwide. The underlying mechanisms for this progressive neurodegenerative disease remain unclear and there is currently no preventive treatment for dry AMD. Sodium iodate (NaIO3) has been reported to induce AMD-like retinal pathology in mice. We established a mouse model for AMD to evaluate the effects of quercetin on NaIO3-induced retinal apoptosis, and to investigate the pertinent underlying mechanisms. Our in vitro results indicated that quercetin protected human retinal pigment epithelium (ARPE-19) cells from NaIO3-induced apoptosis by inhibiting reactive oxygen species production and loss of mitochondrial membrane potential as detected by Annexin V-FITC/PI flow cytometry. We also evaluated the relative expression of proteins in the apoptosis pathway. Quercetin downregulated the protein expressions of Bax, cleaved caspase-3, and cleaved PARP and upregulated the expression of Bcl-2 through reduced PI3K and pAKT expressions. Furthermore, our in vivo results indicated that quercetin improved retinal deformation and increased the thickness of both the outer nuclear layer and inner nuclear layer, whereas the expression of caspase-3 was inhibited. Taken together, these results demonstrate that quercetin could protect retinal pigment epithelium and the retina from NaIO3-induced cell apoptosis via reactive oxygen species-mediated mitochondrial dysfunction, involving the PI3K/AKT signaling pathway. This suggests that quercetin has the potential to prevent and delay AMD and other retinal diseases involving NaIO3-mediated apoptosis.
Calla lily chlorotic spot virus (CCSV) isolated from central Taiwan was recently identified as a tospovirus serologically but distantly related to Watermelon silver mottle virus (WSMoV). To clarify the serological relationship between the two viruses, rabbit polyclonal antibody (PAb) to CCSV and mouse monoclonal antibodies (MAbs) to WSMoV NP or CCSV NP were produced in this investigation, using purified nucleocapsid protein (NP) as immunogens. The PAb to CCSV NP reacted stronger with the homologous antigen than with the heterologous antigen, with much lower A(405) readings in indirect enzyme-linked immunosorbent assay (ELISA) and low-intensity banding in immunoblotting. MAbs produced to CCSV NP or WSMoV NP reacted specifically with the homologous antigens but not with the heterologous antigens in both ELISA and immunoblot analyses. The CCSV S RNA was determined to be 3,172 nucleotides in length, with an inverted repeat at the 5' and 3' ends and two open reading frames encoding the NP and a nonstructural (NSs) protein in an ambisense arrangement. A typical 3'-terminal sequence (5'-AUUGCUCU-3') that is shared by all members of the genus Tospovirus also is present in the CCSV S RNA. The CCSV NP and NSs protein share low amino acid identities of 20.1 to 65.1% and 19.9 to 66.1%, respectively, with those of reported tospoviruses. Phylogenetic dendrogram analysis indicates that CCSV is a distinct member in the genus Tospovirus. The results provide evidence that CCSV is a new species in the genus Tospovirus and belongs to WSMoV serogroup.
The nucleotide sequence of the L RNA of Watermelon silver mottle virus (WSMoV) was determined. Combined with the previous work on M and S RNAs, the whole genomic sequence of this member of the genus Tospovirus was completed. The L RNA is 8,917 nucleotides in length, with one large open reading frame encoding a translation product of 2,878 amino acids (331.8 kDa) on the viral complementary strand. The L protein shares amino acid identities of only 44.3 and 46.5% with Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus, respectively; but an amino acid identity of 91.3% with Peanut bud necrosis virus. Among the sequenced tospoviruses, L protein was the most conserved gene product, whereas the nonstructural S protein was generally the most variable. Comparison of the deduced L protein of WSMoV with those of other members of the family Bunyaviridae revealed that its amino acid sequence includes the reported conserved motifs of RNA-dependent RNA polymerases. To develop a method for detecting tospo-viruses by reverse transcription-polymerase chain reaction (RT-PCR), two pairs of degenerate primers were designed from conserved regions of the L genes and used to amplify the corresponding regions of the L genes from total RNAs extracted from plant tissues infected with five serologically distinct tospoviruses. The DNA fragments obtained were identified as those of tospoviruses by restriction enzyme digestion and DNA sequencing. For field samples, watermelon and wax gourd infected with WSMoV, and lisianthus infected with TSWV were also successfully detected by these two pairs of degenerate primers, with a sensitivity similar to N-gene-specific primers. The results indicated that the RT-PCR with the degenerate primers is a fast and reliable method for detecting tospoviruses in different serogroups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.