Aberrant activation of the epidermal growth factor receptor (EGFR/ERBB1) by erythroblastic leukemia viral oncogene homolog (ERBB) ligands contributes to various tumor malignancies, including lung cancer and colorectal cancer (CRC). Epiregulin (EREG) is one of the EGFR ligands and is low expressed in most normal tissues. Elevated EREG in various cancers mainly activates EGFR signaling pathways and promotes cancer progression. Notably, a higher EREG expression level in CRC with wild-type Kirsten rat sarcoma viral oncogene homolog (KRAS) is related to better efficacy of therapeutic treatment. By contrast, the resistance of anti-EGFR therapy in CRC was driven by low EREG expression, aberrant genetic mutation and signal pathway alterations. Additionally, EREG overexpression in non-small cell lung cancer (NSCLC) is anticipated to be a therapeutic target for EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, recent findings indicate that EREG derived from macrophages promotes NSCLC cell resistance to EGFR-TKI treatment. The emerging events of EREG-mediated tumor promotion signals are generated by autocrine and paracrine loops that arise from tumor epithelial cells, fibroblasts, and macrophages in the tumor microenvironment (TME). The TME is a crucial element for the development of various cancer types and drug resistance. The regulation of EREG/EGFR pathways depends on distinct oncogenic driver mutations and cell contexts that allows specific pharmacological targeting alone or combinational treatment for tailored therapy. Novel strategies targeting EREG/EGFR, tumor-associated macrophages, and alternative activation oncoproteins are under development or undergoing clinical trials. In this review, we summarize the clinical outcomes of EREG expression and the interaction of this ligand in the TME. The EREG/EGFR pathway may be a potential target and may be combined with other driver mutation targets to combat specific cancers.
Combining a EGFR TKI with BEV extended PFS and protected against brain metastasis. Those effects were probably due to the reduction of circulating S100A9-positive MDSCs by BEV, which leads to restoration of effective antitumor immunity. Our data also support the rationale for a BEV-immune checkpoint inhibitor combination.
Introduction This study, for the first time to our knowledge, evaluated the efficacy of ropeginterferon alfa-2b, a long-acting pegylated interferon (IFN)-alfa, in the treatment of COVID-19. Methods We retrospectively evaluated ropeginterferon alfa-2b administered subcutaneously at a single dose of 250 µg for the treatment of mild and moderate COVID-19. Primary outcome was to compare the overall negative conversion time from the confirmed, last positive SARS-CoV-2 RT-PCR to the first RT-PCR negative conversion between patients receiving ropeginterferon alfa-2b plus standard of care (SOC) and those receiving SOC alone. Results Thirty-five patients with mild COVID-19 and 37 patients with moderate disease were included. Of them, 19 patients received SOC plus ropeginterferon alfa-2b and 53 patients received SOC alone. All patients with moderate disease in the ropeginterferon alfa-2b group showed RT-PCR negative conversion within 8 days, while a significant portion of patients in the SOC alone group failed to do so. For patients with moderate disease and age ≤ 65 years old, the ropeginterferon alfa-2b group had statistically significant shorter median RT-PCR conversion time than the SOC alone group (7 vs. 11.5 days, p < 0.05). Conclusions Ropeginterferon alfa-2b showed the potential for the treatment of moderate COVID-19 patients. A randomized, controlled Phase III study is planned to further assess the effectiveness of ropeginterferon alfa-2b in COVID-19 patients. Supplementary Information The online version contains supplementary material available at 10.1007/s12325-021-01998-y.
BackgroundThe interactions between tumor cells and the host immune system play a crucial role in lung cancer progression and resistance to treatment. The alterations of EGFR signaling have the potential to produce an ineffective tumor-associated immune microenvironment by upregulating a series of immune suppressors, including inhibitory immune checkpoints, immunosuppressive cells, and cytokines. Elevated Heparin-binding EGF-like growth factor (HB-EGF) expression, one EGFR ligand correlated with higher histology grading, worse patient prognosis, and lower overall survival rate, acts as a chemotactic factor. However, the role of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in the accumulation of immune cells in the tumor microenvironment remains unclear.MethodsThe clinical association of HB-EGF expression in lung cancer was examined using the Gene Expression Omnibus (GEO) repository. HB-EGF expression in different cell types was determined using single-cell RNA sequencing (scRNA-seq) dataset. The correlation between HB-EGF expression and cancer-immune infiltrated cells was investigated by performing TIMER and ClueGo pathways analysis from TCGA database. The chemotaxis of HB-EGF and macrophage infiltration was investigated using migration and immunohistochemical staining.ResultsThe high HB-EGF expression was significantly correlated with poor overall survival in patients with lung adenocarcinoma (LUAD) but not lung squamous cell carcinoma (LUSC). Moreover, HB-EGF expression was correlated with the infiltration of monocytes, macrophages, neutrophils, and dendritic cells in LUAD but not in LUSC. Analysis of scRNA-seq data revealed high HB-EGF expression in lung cancer cells and myeloid cells. Results from the pathway analysis and cell-based experiment indicated that elevated HB-EGF expression was associated with the presence of macrophage and lung cancer cell migration. HB-EGF was highly expressed in tumors and correlated with M2 macrophage infiltration in LUAD.ConclusionsHB-EGF is a potential prognostic marker and therapeutic target for lung cancer progression, particularly in LUAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.