Accumulation of carbon dioxide (CO2) can disturb systemic and cerebral hemodynamics in patients receiving electroconvulsive therapy (ECT). The purpose of this study was to identify the effects of end-tidal CO2 monitoring on hemodynamic changes in patients who received ECT under propofol anesthesia. ECT was prescribed to 40 patients under propofol anesthesia. Ventilation was assisted using a face mask and 100% oxygen, with or without end-tidal CO2 monitoring. Heart rate was significantly increased in patients without end-tidal CO2 monitoring at 1 to 5 minutes after electrical stimulation (p < 0.01). Mean arterial blood pressure and middle cerebral artery blood flow velocity in the group without end-tidal CO2 monitoring were significantly larger than the values in the group with the monitor at 1 to 5 minutes after electrical stimulation. Arterial CO2 tension in the group without end-tidal CO2 monitoring was larger than the value in the group with the monitoring at 1 minute (45+/-5 mm Hg with the monitor and 56+/-8 without the monitor) and 5 minutes (37+/-4 mm Hg with the monitor and 51+/-8 without the monitor) after electrical stimulation (p< 0.01). Application of end-tidal CO2 monitoring is considered beneficial for safe and effective anesthesia management of patients undergoing ECT, especially patients with an intracranial disorder or ischemic heart disease.
Prolonged CPR at high altitude exerts a significant physical effect upon the condition of rescuers. A role for mechanical devices should be considered wherever possible.
The pathophysiology of altitude-related disorders in untrained trekkers has not been clarified. In the present study, the effects of workload on cardiovascular parameters and regional cerebral oxygenation were studied in untrained trekkers at altitudes of 2700 m and 3700 m above sea level. We studied 6 males and 4 females at each altitude, and their average ages were 31.3+/-7.1 y at 2700 m and 31.2+/-6.8 y at 3700 m, respectively. The resting values of heart rate and mean blood pressure were not significantly different at 2700 m and 3700 m than at sea level. However, increases in these values after exercise were more prominent at high altitudes (heart rate increase = 51.6% at 2700 m and 70.4% at 3700 m; mean blood pressure increase: 19.0% at 2700 m and 17.2% at 3700 m). In addition, post-exercise blood lactate concentration was significantly higher at 3700 m than at sea level or at 2700 m (i.e., 7.6 mM at 3700 m, 3.8 mM at 2700 m, and 4.17 mM at 0 m, respectively). Exercise induced an acute reduction in the arterial oxygen saturation value (SpO2) at 2700 m and 3700 m (i.e., 11.2% reduction at 2700 m and 9.4% at 3700 m), whereas no changes were observed at sea level. The resting values of regional oxygen saturation (rSO2)--measured by a near infra-red spectrophotometer at sea level, 2700 m, and 3700 m-were nearly identical. Exercise at sea level did not reduce this value. In contrast, we observed a decrease in rSO2 after subjects exercised at 2700 m and 3700 m (i.e., 26.9% at 2700 m and 48.1% at 3700 m, respectively). The rSO2 measured 2 min and 3 min after exercise at 3700 m was significantly higher than the preexercise value. From these observations, we concluded that alterations in cardiovascular parameters were apparent only after an exercise load occurred at approximately 3000 m altitude. Acute reduction in cerebral regional oxygen saturation might be a primary cause of headache and acute mountain sickness among unacclimatized trekkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.