[3H]Batrachotoxinin-A benzoate ([3H]BTX-B) binds with high affinity to sites on voltage sensitive sodium channels in synaptoneurosomes from guinea pig cerebral cortex. Local anesthetics competitively antagonize the binding of [3H]BTX-B. An irreversible local anesthetic, procaine isothiocyanate (PRIT) and a tritiated derivative [( 3H]PRIT) have been prepared. PRIT inhibits the binding of [3H]BTX-B in a noncompetitive, irreversible manner (apparent Ki = 13 microM) whereas the parent compound, procaine, inhibits in a competitive, reversible manner (Ki = 40 microM). The dissociation rate of [3H]BTX-B from sites on the sodium channel is greatly accelerated in a concentration dependent manner in the presence of PRIT. A 50% increase in the dissociation rate of [3H]BTX-B is achieved in the presence of 0.98 microM PRIT. [3H]PRIT binds irreversibly to three proteins in synaptoneurosomes with apparent molecular weights of 20, 42, and 68 kDa. Protection studies with procaine and other local anesthetics suggest that only the 68 kDa species was related to local anesthetic binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.