We have developed a microchip for polymerase chain reaction (PCR) with polydimethylsiloxane (PDMS). PDMS has good characteristics: it is cheap, transparent, easy to fabricate and biocompatible. But in micro PCR, the porosity of PDMS causes several critical problems such as bubble formation, sample evaporation and protein adsorption. To solve those problems, we coated the micro PCR chips with Parylene film, which has low permeability to moisture and long-term stability. We investigated the influence of low thermal conductivity of PDMS and Parylene on the thermal characteristics of the PCR chips with numerical analysis. The thermal responses of micro PCR chips were compared for three materials: silicon, glass and PDMS. From the results, we identified appropriate thermal responses of the PDMS-based micro PCR chips by heating both the top and bottom sides. We could successfully amplify the angiotensin converting enzyme gene with as small a volume as 2 μl on the PDMS-based micro PCR chips without any additives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.