Numerous emerging applications in modern society require humidity sensors that are not only sensitive and specific but also durable and intelligent. However, conventional humidity sensors do not have all of these simultaneously because they require very different or even contradictory design principles. Here, inspired by camel noses, we develop a porous zwitterionic capacitive humidity sensor. Relying on the synergistic effect of a porous structure and good chemical and thermal stabilities of hygroscopic zwitterions, this sensor simultaneously exhibits high sensitivity, discriminability, excellent durability, and, in particular, the highest respond speed among reported capacitive humidity sensors, with demonstrated applications in the fast discrimination between fresh, stale, and dry leaves, high-resolution touchless human-machine interactive input devices, and the real-time monitoring humidity level of a hot industrial exhaust. More importantly, this sensor exhibits typical synapse behaviors such as paired-pulse facilitation due to the strong binding interactions between water and zwitterions. This leads to learning and forgetting features with a tunable memory, thus giving the sensor artificial intelligence and enabling the location of water sources. This work offers a general design principle expected to be applied to develop other high-performance biochemical sensors and the nextgeneration intelligent sensors with much broader applications.
Tremendous progress has been achieved on organic transistor-based photodetectors; however, because of the nonpositive correlation relationship between the photo/dark current ratio (P) and the gate voltage, the claimed best P, R (photoresponsivity), and D* (detectivity) can hardly be obtained simultaneously at a given gate voltage, which severely compromises the device performance. Here, a light and voltage dually gated transistor based on an organic semiconducting single crystal of 2,6-dithienylanthracene (DTAnt) is developed. Attributing to its very low on/off ratio in the dark and the remarkable increment of mobilities under illumination, this phototransistor shows good performance with a P of 3.83 × 103, R of 1.32 A W–1, and D* of 1.94 × 1012 Jones achieved simultaneously at V g = −100 V. Besides, the good reversibility and repeatability of its light-responsive behavior allows for the construction of an artificial photonic neuromorphic device with demonstrated synaptic functions, including excitatory postsynaptic current, short/long-term memory , and pair-pulse facilitation/depression.
Data encryption, protection, and anticounterfeiting are crucial in the modern information society. Though a number of technologies have been developed, data security is still facing severe challenges. Herein, a fundamental new approach capable of multilevel data encryption, protection, and anticounterfeiting is developed based on the responsive zwitterionic polymers named as p o l y ( p e n t a fl u o r o p h e n y l a c r y l a t e )c o -p o l y [ ( 3 -( ( 3acrylamidopropyl)dimethylammonio)propane-1-sulfonate)] (pPFPA-co-pADPS). Detailed studies reveal that zwitterionic polymers exhibit drastic electrical property changes to humidity variation. By reliance of this feature, highly secure touchless palmbased biometric authentication is realized; further, field-effect transistors (FETs) using zwitterionic polymers as dielectrics show nonvolatile memory behaviors with good reliability and rewrite-ability. Remarkably, not only appropriate voltages but also specific humidity range are required to safely decrypt the stored message. In addition, the memory gains the ability to destroy the stored data under counterfeiting/hacking condition, thus preventing the data from being stolen by repeated trials. Therefore, a high level of data security is realized. This work provides new insights into zwitterionic copolymer dielectric based OFETs, demonstrates the first example of double-stage data encryption and protection by OFET memory, and opens up new opportunities for data-securing by responsive materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.