Background Singapore used to report an annual average of 14 cases of Japanese encephalitis, but ever since the abolishment of pig farms in the early 1990s, the local incidence rate for Japanese encephalitis virus (JEV) infections has reduced drastically. Studies done in the early 2000s demonstrated the presence of JEV-specific antibodies in animals such as wild boars, dogs, chickens and goats on the offshore island and peripheral parts of the Singapore, indicative of prior JEV exposure. A JEV wildlife and sentinel chicken surveillance system was initiated in 2010 through to 2017 to study the animal host seroprofiles. Results A total of 12/371 (3.23%) of resident bird samples, 24/254 (9.45%) of migratory bird samples and 10/66 (15.16%) of wild boar samples were positive for the presence of JEV antibodies. Seroconversions in sentinel chickens were observed at two time points. Through this study, two sites with active transmission of JEV amongst avian or porcine hosts were identified. Conclusions JEV transmission in animal hosts has continued despite the phasing out of pig farming nearly thirty years ago; however, the public health risk of transmission remains low. Environmental management for mosquito population remains key to keeping this risk low.
Bats are important reservoirs and vectors in the transmission of emerging infectious diseases. Many highly pathogenic viruses such as SARS-CoV and rabies-related lyssaviruses have crossed species barriers to infect humans and other animals. In this study we monitored the major roost sites of bats in Singapore, and performed surveillance for zoonotic pathogens in these bats. Screening of guano samples collected during the survey uncovered a bat coronavirus (Betacoronavirus) in Cynopterus brachyotis, commonly known as the lesser dog-faced fruit bat. Using a capture-enrichment sequencing platform, the full-length genome of the bat CoV was sequenced and found to be closely related to the bat coronavirus HKU9 species found in Leschenault’s rousette discovered in the Guangdong and Yunnan provinces.
Avian pox is a highly contagious avian disease, yet relatively little is known about the epidemiology and transmission of Avipoxviruses. Using a molecular approach, we report evidence for a potential link between birds and field-caught mosquitoes in the transmission of Fowlpox virus (FWPV) in Singapore. Comparison of fpv167 (P4b), fpv126 (VLTF-1), fpv175–176 (A11R-A12L) and fpv140 (H3L) gene sequences revealed close relatedness between FWPV strains obtained from cutaneous lesions of a chicken and four pools of Culex pseudovishnui, Culex spp. (vishnui group) and Coquellitidea crassipes caught in the vicinity of the study site. Chicken-derived viruses characterized during two separate infections two years later were also identical to those detected in the first event, suggesting repeated transmission of closely related FWPV strains in the locality. Since the study location is home to resident and migratory birds, we postulated that wild birds could be the source of FWPV and that bird-biting mosquitoes could act as bridging mechanical vectors. Therefore, we determined whether the FWPV-positive mosquito pools (n=4) were positive for avian DNA using a polymerase chain reaction-sequencing assay. Our findings confirmed the presence of avian host DNA in all mosquito pools, suggesting a role for Cx. pseudovishnui, Culex spp. (vishnui group) and Cq. crassipes mosquitoes in FWPV transmission. Our study exemplifies the utilization of molecular tools to understand transmission networks of pathogens affecting avian populations, which has important implications for the design of effective control measures to minimize disease burden and economic loss.
. Mosquito-borne flaviviruses are emerging pathogens of an increasing global public health concern because of their rapid increase in geographical range and the impact of climate change. Japanese encephalitis virus (JEV) and West Nile virus (WNV) are of concern because of the risk of reemergence and introduction by migratory birds. In Singapore, human WNV infection has never been reported and human JEV infection is rare. Four sentinel vector surveillance sites were established in Singapore to understand the potential risk posed by these viruses. Surveillance was carried out from August 2011 to December 2012 at Pulau Ubin, from March 2011 to March 2013 at an Avian Sanctuary (AS), from December 2010 from October 2012 at Murai Farmway, and from December 2010 to December 2013 at a nature reserve. The present study revealed active JEV transmission in Singapore through the detection of JEV genotype II in Culex tritaeniorhynchus collected from an Avian Sanctuary. Culex flavivirus (CxFV), similar to the Quang Binh virus isolated from Cx. tritaeniorhynchus in Vietnam and CxFV-LSFlaviV-A20-09 virus isolated in China, was also detected in Culex spp. ( vishnui subgroup) . No WNV was detected. This study demonstrates the important role that surveillance plays in public health and strongly suggests the circulation of JEV among wildlife in Singapore, despite the absence of reported human cases. A One Health approach involving surveillance, the collaboration between public health and wildlife managers, and control of mosquito populations remains the key measures in risk mitigation of JEV transmission in the enzootic cycle between birds and mosquitoes.
Many birds wintering in the Indian subcontinent fly across the Himalayas during migration, including Bar-headed Geese (Anser indicus), Demoiselle Cranes (Anthropoides virgo) and Ruddy Shelducks (Tadorna ferruginea). However, little is known about whether shorebirds migrate across the Himalayas from wintering grounds beyond the Indian subcontinent. Using geolocators and satellite tracking devices, we demonstrate for the first time that Common Redshanks (Tringa totanus) and Whimbrels (Numenius phaeopus) wintering in Singapore can directly fly over the Himalayas to reach breeding grounds in the Qinghai-Tibet Plateau and north-central Russia respectively. The results also show that migratory shorebirds wintering in Southeast Asia can use both the Central Asian Flyway and the East Asian-Australasian Flyway. For Redshanks, westerly-breeding birds crossed the Himalayas while more easterly breeders on the Plateau migrated east of the Himalayas. For Whimbrels, an individual that crossed the Himalayas was probably from a breeding population that was different from the others that migrated along the coast up the East Asian-Australasian Flyway. The minimum required altitude of routes of trans-Himalayan Redshanks were no higher on average than those of eastern migrants, but geolocator temperature data indicate that birds departing Singapore flew at high elevations even when not required to by topography, suggesting that the Himalayan mountain range may be less of a barrier than assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.