Background-Coronary atherosclerotic disease remains the leading cause of death in the Western world. Although the exact sequence of events in this process is controversial, reactive oxygen and nitrogen species (RS) likely play an important role in vascular cell dysfunction and atherogenesis. Oxidative damage to the mitochondrial genome with resultant mitochondrial dysfunction is an important consequence of increased intracellular RS. Methods and Results-We examined the contribution of mitochondrial oxidant generation and DNA damage to the progression of atherosclerotic lesions in human arterial specimens and atherosclerosis-prone mice. Mitochondrial DNA damage not only correlated with the extent of atherosclerosis in human specimens and aortas from apolipoprotein E Ϫ/Ϫ mice but also preceded atherogenesis in young apolipoprotein E Ϫ/Ϫ mice. Apolipoprotein E Ϫ/Ϫ mice deficient in manganese superoxide dismutase, a mitochondrial antioxidant enzyme, exhibited early increases in mitochondrial DNA damage and a phenotype of accelerated atherogenesis at arterial branch points. Key Words: atherosclerosis Ⅲ muscle, smooth Ⅲ antioxidants R eactive species (RS) define a collective grouping of reactive oxygen and nitrogen species that can alter the biological functions of essential molecules such as lipids, proteins, and DNA. Numerous studies have linked excess RS generation with vascular lesion formation and functional defects. [1][2][3] This association has been reported for various RS models and species. 4 -6 A role for RS in atherogenesis is supported by epidemiological evidence of links between common risk factors for coronary artery disease and increased levels of RS. [7][8][9] Among the extensively studied intracellular systems capable of generating RS in vascular cells are the NADH/NADPH oxidase, xanthine oxidase, lipoxygenase, and cyclooxygenase systems. 6,10 -12 Mitochondria are biologically important sources and targets for RS. 13,14 However, their role as mediators of oxidative disease processes such as atherogenesis has not been examined. We recently reported that exposure of vascular cells to RS in vitro results in preferential mitochondrial DNA (mtDNA) damage and dysfunction and that mtDNA damage is a very sensitive marker for RS-mediated cellular effects. 15 In addition to the potential role of mtDNA damage as a marker of ambient oxidative stress, oxidative damage to the mitochondrion can lead to decreased oxidative energetic capacity (via impaired oxidative phosphorylation) and increased generation of intracellular RS. 15-17 Thus, we hypothesized that mitochondrial dysfunction accentuates atherosclerosis by modulating the phenotype of vascular cells and that measurements of mtDNA damage reflect RS-mediated atherosclerosis risk. Conclusions-MitochondrialUsing human aortic specimens and a murine model of early atherogenesis (the apolipoprotein E null, apoE Ϫ/Ϫ ), we examined the correlation between mtDNA damage and atherogenesis and sought to determine whether mtDNA damage is a cause or an effect in this pr...
The cellular mechanisms that contribute to the acceleration of atherosclerosis in aging populations are poorly understood, although it is hypothesized that changes in the proliferative capacity of vascular smooth muscle cells is contributory. We addressed the relationship among aging, generation of reactive oxygen species (ROS), and proliferation in primary culture smooth muscle cells (SMC) derived from the aortas of young (4 mo old) and aged (16 mo old) mice to understand the phenotypic modulation of these cells as aging occurs. SMC from aged mice had decreased proliferative capacity in response to alpha-thrombin stimulation, yet generated higher levels of ROS and had constitutively increased mitogen-activated protein kinase activity, in comparison with cells from younger mice. These effects may be explained by dysregulation of cell cycle-associated proteins such as cyclin D1 and p27Kip1 in SMC from aged mice. Increased ROS generation was associated with decreased endogenous antioxidant activity, increased lipid peroxidation, and mitochondrial DNA damage. Accrual of oxidant-induced damage and decreased proliferative capacity in SMC may explain, in part, the age-associated transition to plaque instability in humans with atherosclerosis.
Blood vessels respond to injury by initiating cell proliferation and migration that result in vascular lesion formation. To determine the roles of thrombin and the thrombin receptor in this process, we characterized thrombin receptor expression in normal and injured arteries, thrombin receptor-mediated smooth muscle cell mitogenesis, and the regulation of thrombin receptor mRNA expression in vitro. Thrombin receptor mRNA was not detected in normal rat or baboon arteries by in situ hybridization. Immunohistochemistry using an antithrombin receptor antibody (TR-R9), directed against the thrombin cleavage site of the rat aortic smooth muscle cell thrombin receptor, revealed low-level staining for thrombin receptor protein in endothelial cells and smooth muscle cells of normal arteries. In contrast, balloon catheter injury increased thrombin mRNA expression in medial smooth muscle cells within 6 hours. This increased thrombin receptor expression continued within the media and in neointimal cells throughout vascular lesion formation, predominantly in areas of active cell proliferation. In vitro, alpha-thrombin stimulates rat aortic smooth muscle cell proliferation in a concentration-dependent manner. That thrombin receptor activation is required for the mitogenic response was confirmed by demonstrating that the polyclonal antibody TR-R9 inhibits thrombin-induced cell proliferation. Thrombin receptor mRNA synthesis was induced by both basic fibroblast growth factor (maximal stimulation of 1.8-fold at 1 hour) and platelet-derived growth factor (maximal stimulation of 2.4-fold at 8 and 24 hours) in quiesced cultured rat aortic smooth muscle cells. In summary, upregulation of smooth muscle cell thrombin receptor expression occurs very early after vascular injury and continues throughout neointimal development.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.