INF2 mutations appear to cause many cases of FSGS-associated Charcot-Marie-Tooth neuropathy, showing that INF2 is involved in a disease affecting both the kidney glomerulus and the peripheral nervous system. These findings provide new insights into the pathophysiological mechanisms linking formin proteins to podocyte and Schwann-cell function. (Funded by the Agence Nationale de la Recherche and others.).
Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease cases. A mutation in 1 of over 40 monogenic genes can be detected in approximately 30% of individuals with SRNS whose symptoms manifest before 25 years of age. However, in many patients, the genetic etiology remains unknown. Here, we have performed whole exome sequencing to identify recessive causes of SRNS. In 7 families with SRNS and facultative ichthyosis, adrenal insufficiency, immunodeficiency, and neurological defects, we identified 9 different recessive mutations in SGPL1, which encodes sphingosine-1-phosphate (S1P) lyase. All mutations resulted in reduced or absent SGPL1 protein and/or enzyme activity. Overexpression of cDNA representing SGPL1 mutations resulted in subcellular mislocalization of SGPL1. Furthermore, expression of WT human SGPL1 rescued growth of SGPL1-deficient dpl1Δ yeast strains, whereas expression of diseaseassociated variants did not. Immunofluorescence revealed SGPL1 expression in mouse podocytes and mesangial cells. Knockdown of Sgpl1 in rat mesangial cells inhibited cell migration, which was partially rescued by VPC23109, an S1P receptor antagonist. In Drosophila, Sply mutants, which lack SGPL1, displayed a phenotype reminiscent of nephrotic syndrome in nephrocytes. WT Sply, but not the disease-associated variants, rescued this phenotype. Together, these results indicate that SGPL1 mutations cause a syndromic form of SRNS.
Abbreviations: NPHS2: nephrosis 2, steroid-resistant ; SRNS: steroid-resistant nephrotic syndrome Introductory paragraphNephrotic syndrome is the consequence of damage to the glomerular filtration barrier, and it refers to the clinical symptoms of heavy proteinuria, hypoalbuminemia, edema and hyperlipidemia. The steroidresistant form of nephrotic syndrome (SRNS) has a poor prognosis, as it often leads to endstage renal disease (ESRD) 1,2 . Mutations in more than 20 genes have been identified in monogenic forms of SRNS, most of which encode podocyte proteins3-5. NPHS2, encoding podocin, is the most frequently mutated of these genes and is responsible for 12-18% of SRNS cases 3,6,7 . Podocin accumulates in dimeric or oligomeric forms in lipid raft microdomains at the podocyte slit diaphragm, which is the key component of the glomerular filtration barrier. On the basis of its predicted structure, podocin belongs to the stomatin protein family, with a hairpin-like intramembrane loop and intracellular N and C termini. The C-terminal portions of both stomatin and podocin are responsible for dimerization 6,[8][9][10][11][12] .Individuals with NPHS2 mutations typically develop SRNS before 6 years of age and progress to ESRD during their first decade of life6. The phenotype can be less severe in the setting of a trans association of an NPHS2 mutation and the polymorphism c.686G>A (p.Arg229Gln, rs61747728), a genotype we hereafter denote as p.[Arg229Gln];[mut] that causes SRNS with a median age at diagnosis of 13 years (range, 0-39 years) and progression to ESRD by 26 years (range, 10-50 years) 7,[13][14][15][16][17][18] . Nevertheless, the p.Arg229Gln variant in the homozygous state does not cause SRNS 19,20 .On the basis of the 15× higher allele frequency of p.Arg229Gln (357/13,006, 2.7%) than the cumulative allele frequency of the known disease-causing variants 13-18,21-43 (24/13,006, 0.18%)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.