Islet transplantation can restore insulin production in insulin-dependent diabetic (IDDM) patients in whom this capacity had been lost for many years [1±7]. This observation has been made in kidney and liver recipients, where advantage is taken of the need for a continuous immune suppression. Survival of the grafts is variable, but generally less than 1 year. A prolonged beta-cell function with a state of insulin-independence after one year was achieved in 7 % of the cases recorded by the Islet Transplant Reg- Diabetologia (1998) Summary Islet allografts in insulin-dependent diabetic (IDDM) patients exhibit variable survival lengths and low rates of insulin-independence despite treatment with anti-T-cell antibodies and maintenance immunosuppression. Use of poorly characterized freshly isolated preparations makes it difficult to determine whether failures are caused by variations in donor tissue. This study assesses survival of standardized beta-cell allografts in C-peptide negative IDDM patients on maintenance immunosuppression following kidney transplantation and without receiving anti-T-cell antibodies or additional immunosuppression. Human islets were isolated from pancreatic segments after maximal 20 h cold-preservation. During culture, preparations were selected according to quality control tests and combined with grafts with standardized cell composition (³ 50 % beta cells), viability ( ³ 90 % ), total beta-cell number (1 to 2 × 10 6 /kg body weight) and insulin-producing capacity (2 to 4 nmol × graft ±1 × h ±1 ). Grafts were injected in a liver segment through the repermeabilized umbilical vein. After 2 weeks C-peptide positivity, four out of seven recipients became C-peptide negative; two of them were initially GAD 65 -antibody positive and exhibited a rise in titre during graft destruction. The other three patients remained C-peptide positive for more than 1 year, two of them becoming insulin-independent with near-normal fasting glycaemia and HbA 1 c ; they remained GAD 65 -and islet cell antibody negative. The three patients with surviving grafts presented a history of anti-thymocyte globulin therapy at kidney transplantation. Long-term surviving grafts increased C-peptide release following intravenous glucagon or oral glucose but not following intravenous glucose. Thus, cultured human beta-cells can survive for more than 1 year in IDDM patients on maintenance anti-rejection therapy for a prior kidney graft and without the need for an increased immunosuppression at the time of implantation. The use of functionally standardized beta-cell grafts helps to identify recipient and graft factors which influence their survival and metabolic effects. Insulin-independence can be achieved by injection of 1.5 million beta-cells per kg body weight in a liver segment. These beta-cell implants respond well to adenylcyclase activators but poorly to glucose. [Diabetologia (1998) 41: 452±459]
Aims/hypothesis: We investigated whether random proinsulin levels and proinsulin:C-peptide ratio (PI:C) complement immune and genetic markers for identifying relatives at high risk of type 1 diabetes. Materials and methods: During an initial sampling, random glycaemia, proinsulin, PI:C and HLA DQ genotype were determined in 561 non-diabetic first-degree relatives who had been positive for islet autoantibodies on one or more occasions and in 561 age-and sex-matched persistently antibodynegative relatives. Results: During follow-up (median 62 months), 46 relatives with antibodies at entry developed type 1 diabetes. At baseline, antibody-positive relatives (n=338) had higher PI:C values (p<0.001) than antibodynegative subjects with (n=223) or subjects without (n=561) later seroconversion. Proinsulin and PI:C were graded according to risk of diabetes as expressed by positivity for (multiple) antibodies or IA-2 antibodies, especially in persons carrying the high-risk HLA DQ2/DQ8 genotype and in prediabetic relatives. In the presence of multiple or IA-2 antibodies, a PI:C ratio exceeding percentile 66 of all antibody-negative relatives at entry (n=784) conferred a 5-year diabetes risk of 50% and 68%, respectively (p<0.001 vs 13% for same antibody status with PI:C
Background and MethodologyPancreatic beta cells show intercellular differences in their metabolic glucose sensitivity and associated activation of insulin production. To identify protein markers for these variations in functional glucose sensitivity, rat beta cell subpopulations were flow-sorted for their level of glucose-induced NAD(P)H and their proteomes were quantified by label-free data independent alternate scanning LC-MS. Beta cell-selective proteins were also identified through comparison with rat brain and liver tissue and with purified islet alpha cells, after geometrical normalization using 6 stably expressed reference proteins.Principal FindingsAll tissues combined, 943 proteins were reliably quantified. In beta cells, 93 out of 467 quantifiable proteins were uniquely detected in this cell type; several other proteins presented a high molar abundance in beta cells. The proteome of the beta cell subpopulation with high metabolic and biosynthetic responsiveness to 7.5 mM glucose was characterized by (i) an on average 50% higher expression of protein biosynthesis regulators such as 40S and 60S ribosomal constituents, NADPH-dependent protein folding factors and translation elongation factors; (ii) 50% higher levels of enzymes involved in glycolysis and in the cytosolic arm of the malate/aspartate-NADH-shuttle. No differences were noticed in mitochondrial enzymes of the Krebs cycle, beta-oxidation or respiratory chain.ConclusionsQuantification of subtle variations in the proteome using alternate scanning LC-MS shows that beta cell metabolic glucose responsiveness is mostly associated with higher levels of glycolytic but not of mitochondrial enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.