A better understanding of the features that define the interplay between cancer cells and immune cells is key to identify new cancer therapies 1 . Yet, focus is often given to those interactions that occur within the primary tumor and its microenvironment, while the role of immune cells during cancer dissemination in patients remains largely uncharacterized 2,3 . Circulating tumor cells (CTCs) are precursors of metastasis in several cancer types [4][5][6] , and are occasionally found within the bloodstream in association with non-malignant cells such as white blood cells (WBCs) 7,8 . The identity and function of these CTC-associated WBCs, as well as the molecular features that define the interaction between WBCs and CTCs are unknown. Here, we achieve the isolation and interrogation of individual CTC-associated WBCs, alongside with corresponding cancer cells within each CTC-WBC cluster, from multiple breast cancer patients and mouse models. Single-cell RNA sequencing reveals a specific pattern of WBCs attached to CTCs, with neutrophils representing the majority of the cases. When comparing the transcriptome profiles of CTCs that were associated to neutrophils with that of CTCs alone, we detect a number of differentially expressed genes that outline cell cycle progression, leading to a higher ability to efficiently seed metastasis. Additionally, we identify cell-cell junction and cytokine-receptor pairs that define CTC-neutrophil clusters, representing key vulnerabilities of the metastatic process. Thus, the association between neutrophils and CTCs fuels cell cycle progression within the bloodstream and expands the metastatic potential of CTCs, providing a rationale for targeting this interaction in breast cancer. 3/28 Main TextCirculating tumor cells (CTCs) are precursors of metastasis in various solid cancers including breast cancer 6 , and are occasionally found in association to white blood cells (WBCs) 7 . The role of CTC-WBC clusters in metastasis development as well as the principles that govern the interplay between CTCs and WBCs during blood-borne metastasis are largely uncharacterized.We first sought to determine the number and composition of CTC-WBC clusters in breast cancer patients and mouse models. We obtained blood samples from 70 patients with invasive breast cancer that discontinued their treatment due to progressive disease, as well as from five different breast cancer mouse models, and we enriched for CTCs using the Parsortix microfluidic device 9 (Extended Data Fig. 1a-e). Live CTCs were stained for cancer-associated cell surface markers EpCAM, HER2, and EGFR or imaged directly for the expression of GFP, as well as labeled for CD45 to identify WBCs (Fig. 1a and Extended Data Fig. 1f). Among 70 patients, 34 (48.6%) had detectable CTCs, with a mean number of 22 CTCs per 7.5ml of blood (Supplementary Tables 1 and 2). While the majority of CTCs were single (88.0%), we also detected CTC clusters (8.6%) and CTC-WBC clusters (3.4%) (Fig. 1b and Extended Data Fig. 1g,h). Similarly, we observed that CTC-...
SummaryImmune cells in the tumor microenvironment modulate cancer progression and are attractive therapeutic targets. Macrophages and T cells are key components of the microenvironment, yet their phenotypes and relationships in this ecosystem and to clinical outcomes are ill defined. We used mass cytometry with extensive antibody panels to perform in-depth immune profiling of samples from 73 clear cell renal cell carcinoma (ccRCC) patients and five healthy controls. In 3.5 million measured cells, we identified 17 tumor-associated macrophage phenotypes, 22 T cell phenotypes, and a distinct immune composition correlated with progression-free survival, thereby presenting an in-depth human atlas of the immune tumor microenvironment in this disease. This study revealed potential biomarkers and targets for immunotherapy development and validated tools that can be used for immune profiling of other tumor types.
In higher eukaryotes, histone methylation is involved in maintaining cellular identity during somatic development. As most nucleosomes are replaced by protamines during spermatogenesis, it is unclear whether histone modifications function in paternal transmission of epigenetic information. Here we show that two modifications important for Trithorax- and Polycomb-mediated gene regulation have methylation-specific distributions at regulatory regions in human spermatozoa. Histone H3 Lys4 dimethylation (H3K4me2) marks genes that are relevant in spermatogenesis and cellular homeostasis. In contrast, histone H3 Lys27 trimethylation (H3K27me3) marks developmental regulators in sperm, as in somatic cells. However, nucleosomes are only moderately retained at regulatory regions in human sperm. Nonetheless, genes with extensive H3K27me3 coverage around transcriptional start sites in particular tend not to be expressed during male and female gametogenesis or in preimplantation embryos. Promoters of orthologous genes are similarly modified in mouse spermatozoa. These data are compatible with a role for Polycomb in repressing somatic determinants across generations, potentially in a variegating manner.
SummaryThe ability of circulating tumor cells (CTCs) to form clusters has been linked to increased metastatic potential. Yet biological features and vulnerabilities of CTC clusters remain largely unknown. Here, we profile the DNA methylation landscape of single CTCs and CTC clusters from breast cancer patients and mouse models on a genome-wide scale. We find that binding sites for stemness- and proliferation-associated transcription factors are specifically hypomethylated in CTC clusters, including binding sites for OCT4, NANOG, SOX2, and SIN3A, paralleling embryonic stem cell biology. Among 2,486 FDA-approved compounds, we identify Na+/K+ ATPase inhibitors that enable the dissociation of CTC clusters into single cells, leading to DNA methylation remodeling at critical sites and metastasis suppression. Thus, our results link CTC clustering to specific changes in DNA methylation that promote stemness and metastasis and point to cluster-targeting compounds to suppress the spread of cancer.
Key Points• The total number of somatic mutations was inversely correlated with survival and risk of leukemic transformation in MPN.• The great majority of somatic mutations were already present at MPN diagnosis, and very few new mutations were detected during follow-up.Myeloproliferative neoplasms (MPNs) are a group of clonal disorders characterized by aberrant hematopoietic proliferation and an increased tendency toward leukemic transformation. We used targeted next-generation sequencing (NGS) of 104 genes to detect somatic mutations in a cohort of 197 MPN patients and followed clonal evolution and the impact on clinical outcome. Mutations in calreticulin (CALR) were detected using a sensitive allele-specific polymerase chain reaction. We observed somatic mutations in 90% of patients, and 37% carried somatic mutations other than JAK2 V617F and CALR. The presence of 2 or more somatic mutations significantly reduced overall survival and increased the risk of transformation into acute myeloid leukemia. In particular, somatic mutations with loss of heterozygosity in TP53 were strongly associated with leukemic transformation. We used NGS to follow and quantitate somatic mutations in serial samples from MPN patients. Surprisingly, the number of mutations between early and late patient samples did not significantly change, and during a total follow-up of 133 patient years, only 2 new mutations appeared, suggesting that the mutation rate in MPN is rather low. Our data show that comprehensive mutational screening at diagnosis and during follow-up has considerable potential to identify patients at high risk of disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.