Macrophages activated by the gram negative bacterial product lipopolysaccharide (LPS) switch their core metabolism from oxidative phosphorylation to glycolysis1. Inhibition of glycolysis with 2-deoxyglucose (2DG) suppressed LPS-induced Interleukin-1 beta (IL-1β) but not Tumour necrosis factor alpha (TNFα) in macrophages. A comprehensive metabolic map of LPS-activated macrophages revealed up-regulation of glycolytic and down-regulation of mitochondrial genes, which correlated directly with the expression profiles of altered metabolites. LPS strongly increased the TCA cycle intermediate succinate. Glutamine-dependent anerplerosis was the major source of succinate with the ‘Gamma-Aminobutyric Acid (GABA)-shunt’ pathway also playing a role. LPS-induced succinate stabilized Hypoxia-inducible factor 1α (HIF-1α), an effect inhibited by 2DG, with IL-1β as an important target. LPS also increases succinylation of several proteins. Succinate is therefore identified as a metabolite in innate immune signalling which leads to enhanced IL-1β production during inflammation.
Ischaemia-reperfusion (IR) injury occurs when blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death, and aberrant immune responses through generation of mitochondrial reactive oxygen species (ROS)1-5. Although mitochondrial ROS production in IR is established, it has generally been considered a non-specific response to reperfusion1,3. Here, we developed a comparative in vivo metabolomic analysis and unexpectedly identified widely conserved metabolic pathways responsible for mitochondrial ROS production during IR. We showed that selective accumulation of the citric acid cycle (CAC) intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase (SDH), which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. Upon reperfusion, the accumulated succinate is rapidly re-oxidised by SDH, driving extensive ROS generation by reverse electron transport (RET) at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo IR injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of IR injury. Furthermore, these findings reveal a novel pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation upon subsequent reperfusion is a potential therapeutic target to decrease IR injury in a range of pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.