LV longitudinal strain assessed with CMR is an independent predictor of survival in DCM and offers incremental information for risk stratification beyond clinical parameters, biomarker, and standard CMR.
BackgroundAssessment of left (LV) ventricular function is one of the most important tasks of cardiovascular magnetic resonance (CMR). Impairment of LV deformation is a strong predictor of cardiovascular outcome in various cardiac diseases like ischemic heart disease or cardiomyopathies. The aim of the study was to provide reference values for myocardial deformation derived from the CMR feature tracking imaging (FTI) algorithm in a reference population of healthy volunteers.MethodsFTI was applied to standard short axis and 2-, 3- and 4-chamber views of vector-ECG gated CMR cine SSFP sequences of 150 strictly selected healthy volunteers (75 male/female) of three age tertiles (mean age 45.8yrs). Global peak and mean radial, circumferential and longitudinal endo- and myocardial systolic strain values as well as early diastolic strain rates were measured using FTI within a standard protocol on a 1.5T whole body MR scanner.ResultsGlobal peak systolic values were 36.3 ± 8.7% for radial, −27.2 ± 4.0% for endocardial circumferential, −21.3 ± 3.3% for myocardial circumferential, −23.4 ± 3.4% for endocardial longitudinal and −21.6 ± 3.2% for myocardial longitudinal strain. Global peak values were -2.1 ± 0.5s−1 for radial, 2.1 ± 0.6s−1 for circumferential endocardial, 1.7 ± 0.5s−1 for circumferential myocardial, 1.8 (1.5-2.2)s−1 for longitudinal endocardial, 1.6 (1.4-2.0)s−1 for longitudinal myocardial early diastolic strain rates. Men showed a higher radial strain than women whereas the circumferential and longitudinal strains were lower resulting in less negative values. Circumferential and longitudinal strain rates were significantly higher in female subjects. Radial strain increased significantly with age whereas the diastolic function measured by the radial, circumferential and longitudinal strain rates showed a decrease.The coefficients of variation determined in ten further subjects, who underwent two CMR examinations within 12 days, were −4.8% for circumferential and −4.5% for longitudinal endocardial mean strains.ConclusionsMyocardial deformation analysis using FTI is a novel technique and robust when applied to standard cine CMR images providing the possibility of a reliable, objective quantification of global LV deformation. Since strain values and strain rates differed partly between genders as well as between age groups, the application of specific reference values as provided by this study is recommendable.
In the largest serial investigation reported so far, reduced LV longitudinal function served as an independent predictor of survival in AL amyloidosis and offered incremental information beyond standard clinical and serological parameters.
Background-Cardiac CT (CCT) and real-time 3D echocardiography (RT3DE) are being used increasingly in clinical cardiology. CCT offers superb spatial and contrast resolution, resulting in excellent endocardial definition. RT3DE has the advantages of low cost, portability, and live 3D imaging without offline reconstruction. We sought to compare both CCT and RT3DE measurements of left ventricular size and function with the standard reference technique, cardiac MR (CMR). Methods and Results-In 31 patients, RT3DE data sets (Philips 7500) and long-axis CMR (Siemens, 1.5 T) and CCT (Toshiba, 16-slice MDCT) images were obtained on the same day without -blockers. All images were analyzed to obtain end-systolic and end-diastolic volumes and ejection fractions using the same rotational analysis to eliminate possible analysis-related differences. Intertechnique agreement was tested through linear regression and Bland-Altman analyses. Repeated measurements were performed to determine intraobserver and interobserver variability. Both CCT and RT3DE measurements resulted in high correlation (r 2 Ͼ0.85) compared with CMR. However, CCT significantly overestimated end-diastolic and end-systolic volumes (26 and 19 mL; PϽ0.05), resulting in a small but significant bias in ejection fraction (Ϫ2.8%). RT3DE underestimated end-diastolic and end-systolic volumes only slightly (5 and 6 mL), with no significant bias in EF (0.3%; Pϭ0.68). The limits of agreement with CMR were comparable for the 2 techniques. The variability in the CCT measurements was roughly half of that in either RT3DE or CMR values.
Conclusions-CCT
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.