PurposeThe aim of this study was to evaluate coronary computed tomography angiography (CCTA)-based in vitro and in vivo coronary artery calcium scoring (CACS) using a novel virtual noniodine reconstruction (PureCalcium) on a clinical first-generation photon-counting detector–computed tomography system compared with virtual noncontrast (VNC) reconstructions and true noncontrast (TNC) acquisitions.Materials and MethodsAlthough CACS and CCTA are well-established techniques for the assessment of coronary artery disease, they are complementary acquisitions, translating into increased scan time and patient radiation dose. Hence, accurate CACS derived from a single CCTA acquisition would be highly desirable. In this study, CACS based on PureCalcium, VNC, and TNC, reconstructions was evaluated in a CACS phantom and in 67 patients (70 [59/80] years, 58.2% male) undergoing CCTA on a first-generation photon counting detector–computed tomography system. Coronary artery calcium scores were quantified for the 3 reconstructions and compared using Wilcoxon test. Agreement was evaluated by Pearson and Spearman correlation and Bland-Altman analysis. Classification of coronary artery calcium score categories (0, 1–10, 11–100, 101–400, and >400) was compared using Cohen κ.ResultsPhantom studies demonstrated strong agreement between CACSPureCalcium and CACSTNC (60.7 ± 90.6 vs 67.3 ± 88.3, P = 0.01, r = 0.98, intraclass correlation [ICC] = 0.98; mean bias, 6.6; limits of agreement [LoA], −39.8/26.6), whereas CACSVNC showed a significant underestimation (42.4 ± 75.3 vs 67.3 ± 88.3, P < 0.001, r = 0.94, ICC = 0.89; mean bias, 24.9; LoA, −87.1/37.2). In vivo comparison confirmed a high correlation but revealed an underestimation of CACSPureCalcium (169.3 [0.7/969.4] vs 232.2 [26.5/1112.2], P < 0.001, r = 0.97, ICC = 0.98; mean bias, −113.5; LoA, −470.2/243.2). In comparison, CACSVNC showed a similarly high correlation, but a substantially larger underestimation (24.3 [0/272.3] vs 232.2 [26.5/1112.2], P < 0.001, r = 0.97, ICC = 0.54; mean bias, −551.6; LoA, −2037.5/934.4). CACSPureCalcium showed superior agreement of CACS classification (κ = 0.88) than CACSVNC (κ = 0.60).ConclusionsThe accuracy of CACS quantification and classification based on PureCalcium reconstructions of CCTA outperforms CACS derived from VNC reconstructions.