The transforming growth factor-β (TGF-β) signalling pathway is a key mediator of fibroblast activation that drives the aberrant synthesis of extracellular matrix in fibrotic diseases. Here we demonstrate a novel link between transforming growth factor-β and the canonical Wnt pathway. TGF-β stimulates canonical Wnt signalling in a p38-dependent manner by decreasing the expression of the Wnt antagonist Dickkopf-1. Tissue samples from human fibrotic diseases show enhanced expression of Wnt proteins and decreased expression of Dickkopf-1. Activation of the canonical Wnt pathway stimulates fibroblasts in vitro and induces fibrosis in vivo. Transgenic overexpression of Dickkopf-1 ameliorates skin fibrosis induced by constitutively active TGF-β receptor type I signalling and also prevents fibrosis in other TGF-β-dependent animal models. These findings demonstrate that canonical Wnt signalling is necessary for TGF-β-mediated fibrosis and highlight a key role for the interaction of both pathways in the pathogenesis of fibrotic diseases.
Signal transducer and activator of transcription 3 (STAT3) is phosphorylated by various kinases, several of which have been implicated in aberrant fibroblast activation in fibrotic diseases including systemic sclerosis (SSc). Here we show that profibrotic signals converge on STAT3 and that STAT3 may be an important molecular checkpoint for tissue fibrosis. STAT3 signaling is hyperactivated in SSc in a TGFβ-dependent manner. Expression profiling and functional studies in vitro and in vivo demonstrate that STAT3 activation is mediated by the combined action of JAK, SRC, c-ABL, and JNK kinases. STAT3-deficient fibroblasts are less sensitive to the pro-fibrotic effects of TGFβ. Fibroblast-specific knockout of STAT3, or its pharmacological inhibition, ameliorate skin fibrosis in experimental mouse models. STAT3 thus integrates several profibrotic signals and might be a core mediator of fibrosis. Considering that several STAT3 inhibitors are currently tested in clinical trials, STAT3 might be a candidate for molecular targeted therapies of SSc.
ObjectivesTo date, there is no valuable tool to assess fibrotic disease activity in humans in vivo in a non-invasive way. This study aims to uncouple inflammatory from fibrotic disease activity in fibroinflammatory diseases such as IgG4-related disease.MethodsIn this cross-sectional clinical study, 27 patients with inflammatory, fibrotic and overlapping manifestations of IgG4-related disease underwent positron emission tomography (PET) scanning with tracers specific for fibroblast activation protein (FAP; 68Ga-FAP inhibitor (FAPI)-04), 18F-fluorodeoxyglucose (FDG), MRI and histopathological assessment. In a longitudinal approach, 18F-FDG and 68Ga-FAPI-04 PET/CT data were evaluated before and after immunosuppressive treatment and correlated to clinical and MRI data.ResultsUsing combination of 68Ga-FAPI-04 and 18F-FDG-PET, we demonstrate that non-invasive functional tracking of IgG4-related disease evolution from inflammatory towards a fibrotic outcome becomes feasible. 18F-FDG-PET positive lesions showed dense lymphoplasmacytic infiltration of IgG4+ cells in histology, while 68Ga-FAPI-04 PET positive lesions showed abundant activated fibroblasts expressing FAP according to results from RNA-sequencing of activated fibroblasts. The responsiveness of fibrotic lesions to anti-inflammatory treatment was far less pronounced than that of inflammatory lesions.ConclusionFAP-specific PET/CT permits the discrimination between inflammatory and fibrotic activity in IgG4-related disease. This finding may profoundly change the management of certain forms of immune-mediated disease, such as IgG4-related disease, as subtypes dominated by fibrosis may require different approaches to control disease progression, for example, specific antifibrotic agents rather than broad spectrum anti-inflammatory treatments such as glucocorticoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.