IgG abzymes (Abzs) with different catalytic activities are a distinctive feature of various autoimmune (AI) diseases. At the same time, data concerning IgMs with catalytic activities are very limited. Electrophoretically and immunologically homogeneous IgMs were isolated from the sera of acquired immunodeficiency syndrome (AIDS) patients by chromatography on several affinity sorbents. Several rigid criteria have been applied to show that the integrase (IN)-hydrolyzing activity is an intrinsic property of IgMs from HIV-infected patients but not from healthy donors. We present evidence showing that 22 of 24 (91.7%) IgMs purified from the sera of HIV-infected patients specifically hydrolyze only HIV IN but not many other tested proteins. Usually, proteolytic antibodies of AI patients are serine protease-like or metal dependent. Only 30% of IN-hydrolyzing IgMs were inhibited by specific inhibitors of serine proteases and 60% by inhibitors of metal-dependent proteases. Unusually, a significant reduction of the activity by specific inhibitors of acidic (in 20% of IgM preparations) and thiol proteases (in 100% of IgM preparations) was observed. Although HIV infection leads to formation of antibodies to many viral and human antigens, possible biological roles for most of them are unknown. Since anti-IN IgG can efficiently hydrolyze IN, a positive role of Abzs in counteracting the infection cannot be excluded. In addition, detection of IN-hydrolyzing activity can be useful for diagnostic purposes and for assessment of the immune status in AIDS patients.
Establishment of stable HIV-1 infection requires the efficient integration of the retroviral genome into the host DNA. The molecular mechanism underlying the control of this process by the chromatin structure has not yet been elucidated. We show here that stably associated nucleosomes strongly inhibit in vitro two viral-end integration by decreasing the accessibility of DNA to integrase. Remodeling of the chromatinized template by the SWI/SNF complex, whose INI1 major component interacts with IN, restores and redirects the full-site integration into the stable nucleosome region. These effects are not observed after remodeling by other human remodeling factors such as SNF2H or BRG1 lacking the integrase binding protein INI1. This suggests that the restoration process depends on the direct interaction between IN and the whole SWI/SNF complex, supporting a functional coupling between the remodeling and integration complexes. Furthermore, in silico comparison between more than 40,000 non-redundant cellular integration sites selected from literature and nucleosome occupancy predictions also supports that HIV-1 integration is promoted in the genomic region of weaker intrinsic nucleosome density in the infected cell. Our data indicate that some chromatin structures can be refractory for integration and that coupling between nucleosome remodeling and HIV-1 integration is required to overcome this natural barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.