This International Consensus Guideline was developed by experts in the field of SGA of 10 pediatric endocrine societies worldwide. A consensus meeting was held and 1300 articles formed the basis for discussions. All experts voted about the strengths of the recommendations. The guideline gives new and clinically relevant insights into the etiology of short stature after SGA birth, including novel knowledge about (epi)genetic causes. Besides, it presents long-term consequences of SGA birth and new treatment options, including treatment with gonadotropin-releasing hormone agonist (GnRHa) in addition to growth hormone (GH) treatment, and the metabolic and cardiovascular health of young adults born SGA after cessation of childhood-GH-treatment in comparison with appropriate control groups. To diagnose SGA, accurate anthropometry and use of national growth charts are recommended. Follow-up in early life is warranted and neurodevelopment evaluation in those at risk. Excessive postnatal weight gain should be avoided, as this is associated with an unfavorable cardio-metabolic health profile in adulthood. Children born SGA with persistent short stature < -2.5 SDS at age 2 years or < -2 SDS at age of 3-4 years, should be referred for diagnostic work-up. In case of dysmorphic features, major malformations, microcephaly, developmental delay, intellectual disability and/or signs of skeletal dysplasia, genetic testing should be considered. Treatment with 0.033–0.067 mg GH/kg/day is recommended in case of persistent short stature at age of 3-4 years. Adding GnRHa treatment could be considered when short adult height is expected at pubertal onset. All young adults born SGA require counseling to adopt a healthy lifestyle.
OBJECTIVE To analyze whether the coronavirus disease 2019 (COVID-19) pandemic increased the number of cases or impacted seasonality of new-onset type 1 diabetes (T1D) in large pediatric diabetes centers globally. RESEARCH DESIGN AND METHODS We analyzed data on 17,280 cases of T1D diagnosed during 2018–2021 from 92 worldwide centers participating in the SWEET registry using hierarchic linear regression models. RESULTS The average number of new-onset T1D cases per center adjusted for the total number of patients treated at the center per year and stratified by age-groups increased from 11.2 (95% CI 10.1–12.2) in 2018 to 21.7 (20.6–22.8) in 2021 for the youngest age-group, <6 years; from 13.1 (12.2–14.0) in 2018 to 26.7 (25.7–27.7) in 2021 for children ages 6 to <12 years; and from 12.2 (11.5–12.9) to 24.7 (24.0–25.5) for adolescents ages 12–18 years (all P < 0.001). These increases remained within the expected increase with the 95% CI of the regression line. However, in Europe and North America following the lockdown early in 2020, the typical seasonality of more cases during winter season was delayed, with a peak during the summer and autumn months. While the seasonal pattern in Europe returned to prepandemic times in 2021, this was not the case in North America. Compared with 2018–2019 (HbA1c 7.7%), higher average HbA1c levels (2020, 8.1%; 2021, 8.6%; P < 0.001) were present within the first year of T1D during the pandemic. CONCLUSIONS The slope of the rise in pediatric new-onset T1D in SWEET centers remained unchanged during the COVID-19 pandemic, but a change in the seasonality at onset became apparent.
This manuscript has recently been accepted for publication in the ERJ Open Research. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJOR online.
Limited prospective SARS-CoV-2 data in children regarding the impact of Omicron variant in seropositivity have been reported. We investigated SARS-CoV-2 seropositivity in children between 1 September 2021 and 30 April 2022, representing Delta and Omicron predominance periods. Serum samples from children admitted to the major tertiary Greek pediatric hospital for any cause, except for COVID-19, were randomly collected and tested for SARS-CoV-2 natural infection antibodies against nucleocapsid antigen (Elecsys® Anti-SARS-CoV-2 reagent). A total of 506/1312 (38.6%) seropositive children (0-16 years) were detected [males: 261/506(51.6%); median age (IQR): 95.2 months(24-144)]. Seropositivity rates (%) increased from Delta to Omicron period from 29.7% to 48.5% (P-value<0.0001). Seropositivity increased for all age groups, except for the age group of 0-1 year (P-value:0.914). The highest seropositivity rate was detected in April 2022 (52.6%) and reached 73.9% specifically for the age group 12-16 years. No significant differences were detected in seropositivity with respect to gender, origin, or hospitalization status. Median (IQR) antibody titers were higher in the Omicron vs Delta period in all age groups, especially in 12-16 years [32.2 COI (7-77.1) vs 11.4 COI(2.8-50.2), Pvalue:0.009]. During Omicron variant period increased SARS-CoV-2 seropositivity was detected in pediatric population, especially in adolescents, implicating either increased transmissibility or reinfection rates.
Maternal health during gestational period is undoubtedly critical in shaping optimal fetal development and future health of the offspring. Gestational diabetes mellitus is a metabolic disorder occurring in pregnancy with an alarming increasing incidence worldwide during recent years. Over the years, there is a growing body of evidence that uncontrolled maternal hyperglycaemia during pregnancy can potentially have detrimental effect on the neurodevelopment of the offspring. Both human and animal data have linked maternal diabetes with motor and cognitive impairment, as well as autism spectrum disorders, attention deficit hyperactivity disorder, learning abilities and psychiatric disorders. This review presents the available data from current literature investigating the relationship between maternal diabetes and offspring neurodevelopmental impairment. Moreover, possible mechanisms accounting for the detrimental effects of maternal diabetes on fetal brain like fetal neuroinflammation, iron deficiency, epigenetic alterations, disordered lipid metabolism and structural brain abnormalities are also highlighted. On the basis of the evidence demonstrated in the literature, it is mandatory that hyperglycaemia during pregnancy will be optimally controlled and the impact of maternal diabetes on offspring neurodevelopment will be more thoroughly investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.