Summary Background Pneumonia is the leading cause of death among children younger than 5 years. In this study, we estimated causes of pneumonia in young African and Asian children, using novel analytical methods applied to clinical and microbiological findings. Methods We did a multi-site, international case-control study in nine study sites in seven countries: Bangladesh, The Gambia, Kenya, Mali, South Africa, Thailand, and Zambia. All sites enrolled in the study for 24 months. Cases were children aged 1–59 months admitted to hospital with severe pneumonia. Controls were age-group-matched children randomly selected from communities surrounding study sites. Nasopharyngeal and oropharyngeal (NP-OP), urine, blood, induced sputum, lung aspirate, pleural fluid, and gastric aspirates were tested with cultures, multiplex PCR, or both. Primary analyses were restricted to cases without HIV infection and with abnormal chest x-rays and to controls without HIV infection. We applied a Bayesian, partial latent class analysis to estimate probabilities of aetiological agents at the individual and population level, incorporating case and control data. Findings Between Aug 15, 2011, and Jan 30, 2014, we enrolled 4232 cases and 5119 community controls. The primary analysis group was comprised of 1769 (41·8% of 4232) cases without HIV infection and with positive chest x-rays and 5102 (99·7% of 5119) community controls without HIV infection. Wheezing was present in 555 (31·7%) of 1752 cases (range by site 10·6–97·3%). 30-day case-fatality ratio was 6·4% (114 of 1769 cases). Blood cultures were positive in 56 (3·2%) of 1749 cases, and Streptococcus pneumoniae was the most common bacteria isolated (19 [33·9%] of 56). Almost all cases (98·9%) and controls (98·0%) had at least one pathogen detected by PCR in the NP-OP specimen. The detection of respiratory syncytial virus (RSV), parainfluenza virus, human metapneumovirus, influenza virus, S pneumoniae, Haemophilus influenzae type b (Hib), H influenzae non-type b, and Pneumocystis jirovecii in NP-OP specimens was associated with case status. The aetiology analysis estimated that viruses accounted for 61·4% (95% credible interval [CrI] 57·3–65·6) of causes, whereas bacteria accounted for 27·3% (23·3–31·6) and Mycobacterium tuberculosis for 5·9% (3·9–8·3). Viruses were less common (54·5%, 95% CrI 47·4–61·5 vs 68·0%, 62·7–72·7) and bacteria more common (33·7%, 27·2–40·8 vs 22·8%, 18·3–27·6) in very severe pneumonia cases than in severe cases. RSV had the greatest aetiological fraction (31·1%, 95% CrI 28·4–34·2) of all pathogens. Human rhinovirus, human metapneumovirus A or B, human parainfluenza virus, S pneumoniae, M tuberculosis , and H influenzae each accounted f...
Background Seasonal influenza virus is a common cause of acute lower respiratory infection (ALRI) in young children. In 2008, we estimated that 20 million influenza-virus-associated ALRI and 1 million influenza-virus-associated severe ALRI occurred in children under 5 years globally. Despite this substantial burden, only a few low-income and middleincome countries have adopted routine influenza vaccination policies for children and, where present, these have achieved only low or unknown levels of vaccine uptake. Moreover, the influenza burden might have changed due to the emergence and circulation of influenza A/H1N1pdm09. We aimed to incorporate new data to update estimates of the global number of cases, hospital admissions, and mortality from influenza-virus-associated respiratory infections in children under 5 years in 2018.Methods We estimated the regional and global burden of influenza-associated respiratory infections in children under 5 years from a systematic review of 100 studies published between Jan 1, 1995, and Dec 31, 2018, and a further 57 high-quality unpublished studies. We adapted the Newcastle-Ottawa Scale to assess the risk of bias. We estimated incidence and hospitalisation rates of influenza-virus-associated respiratory infections by severity, case ascertainment, region, and age. We estimated in-hospital deaths from influenza virus ALRI by combining hospital admissions and in-hospital case-fatality ratios of influenza virus ALRI. We estimated the upper bound of influenza virus-associated ALRI deaths based on the number of in-hospital deaths, US paediatric influenza-associated death data, and populationbased childhood all-cause pneumonia mortality data in six sites in low-income and lower-middle-income countries.Findings In 2018, among children under 5 years globally, there were an estimated 109•5 million influenza virus episodes (uncertainty range [UR] 63•1-190•6), 10•1 million influenza-virus-associated ALRI cases (6•8-15•1); 870 000 influenza-virus-associated ALRI hospital admissions (543 000-1 415 000), 15 300 in-hospital deaths (5800-43 800), and up to 34 800 (13 200-97 200) overall influenza-virus-associated ALRI deaths. Influenza virus accounted for 7% of ALRI cases, 5% of ALRI hospital admissions, and 4% of ALRI deaths in children under 5 years. About 23% of the hospital admissions and 36% of the in-hospital deaths were in infants under 6 months. About 82% of the in-hospital deaths occurred in low-income and lower-middle-income countries.Interpretation A large proportion of the influenza-associated burden occurs among young infants and in low-income and lower middle-income countries. Our findings provide new and important evidence for maternal and paediatric influenza immunisation, and should inform future immunisation policy particularly in low-income and middleincome countries.Funding WHO; Bill & Melinda Gates Foundation.
Background The SARS-CoV-2 pandemic has revealed the vulnerability of immunisation systems worldwide, although the scale of these disruptions has not been described at a global level. This study aims to assess the impact of COVID-19 on routine immunisation using triangulated data from global, country-based, and individual-reported sources obtained during the pandemic period. Methods This report synthesised data from 170 countries and territories. Data sources included administered vaccine-dose data from January to December, 2019, and January to December, 2020, WHO regional office reports, and a WHO-led pulse survey administered in April, 2020, and June, 2020. Results were expressed as frequencies and proportions of respondents or reporting countries. Data on vaccine doses administered were weighted by the population of surviving infants per country. Findings A decline in the number of administered doses of diphtheria–pertussis–tetanus-containing vaccine (DTP3) and first dose of measles-containing vaccine (MCV1) in the first half of 2020 was noted. The lowest number of vaccine doses administered was observed in April, 2020, when 33% fewer DTP3 doses were administered globally, ranging from 9% in the WHO African region to 57% in the South-East Asia region. Recovery of vaccinations began by June, 2020, and continued into late 2020. WHO regional offices reported substantial disruption to routine vaccination sessions in April, 2020, related to interrupted vaccination demand and supply, including reduced availability of the health workforce. Pulse survey analysis revealed that 45 (69%) of 65 countries showed disruption in outreach services compared with 27 (44%) of 62 countries with disrupted fixed-post immunisation services. Interpretation The marked magnitude and global scale of immunisation disruption evokes the dangers of vaccine-preventable disease outbreaks in the future. Trends indicating partial resumption of services highlight the urgent need for ongoing assessment of recovery, catch-up vaccination strategy implementation for vulnerable populations, and ensuring vaccine coverage equity and health system resilience. Funding US Agency for International Development.
Tumors evade both natural and pharmacologically induced (e.g., vaccines) immunity by a variety of mechanisms, including induction of tolerance and immunoediting. Immunoediting results in reshaping the immunogenicity of the tumor, which can be accompanied by loss of Ag expression and MHC molecules. In this study, we evaluated immunoediting in the neu-transgenic mouse model of breast cancer. A tumor cell line that retained expression of rat neu was generated from a spontaneous tumor of the neu-transgenic mouse and, when injected into the non-transgenic parental FVB/N mouse, resulted in the development of a strong immune response, initial rejection, and ultimately the emergence of neu Ag-loss variants. Morphologic and microarray data revealed that the immunoedited tumor cells underwent epithelial to mesenchymal transition accompanied by an up-regulation of invasion factors and increased invasiveness characteristic of mesenchymal tumor cells. These results suggest that immunoediting of tumor results in cellular reprogramming may be accompanied by alterations in tumor characteristics including increased invasive potential. Understanding the mechanisms by which tumors are immunoedited will likely lead to a better understanding of how tumors evade immune detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.