Cu/CeO2 catalysts are highly active for the low-temperature water-gas shift-a core reaction in syngas chemistry for tuning H2/CO/CO2 proportions in feed-streams-but direct identification and a quantitative description of the active sites remains challenging. Here, we report that the active copper clusters consist of a bottom layer of mainly Cu + atoms bonded on the oxygen vacancies of ceria, in a form of Cu +-Ov-Ce 3+ , and a top layer of Cu 0 atoms coordinated with the underlying Cu + atoms. This atomic structure model is based on directly observing copper clusters dispersed on ceria by a combination of scanning transmission electron microscopy and electron energy loss spectroscopy, in situ probing the interfacial copper-ceria bonding environment by infrared spectroscopy, and rationalization by density functional theory calculations. These results, together with reaction kinetics, reveal that the reaction occurs at the copper-ceria interfacial perimeter via a site cooperation mechanism: the Cu + site chemically adsorbs CO while the neighboring-Ov-Ce 3+ site dissociatively activates H2O. Copper nanoparticles, dispersed on ceria, constitute a highly efficient catalyst system for reactions in syngas (a mixture of H2, CO, and CO2) chemistry, such as the low-temperature water-gas shift (WGS) reaction 1-7 and CO/CO2 hydrogenation yielding methanol 8-13. In these technologically highly relevant Cu/CeO2 catalysts, copper is commonly viewed as the active component, while the ceria support, with a prominent redox behavior, tunes the dispersion and chemical state of the copper nanoparticles via strong metal-support interactions 14-16. In the case of the low-temperature WGS, a crucial reaction for regulating the H2/CO/CO2 proportions in feed gases for the downstream industrial applications, the active sites have been presumably proposed to locate at the copper-ceria interface. This hypothesis is based on intensive experimental studies on both real Cu/CeO2 catalysts 2-6 and model CeO2/Cu systems 17,18 as well as theoretical simulations of copper-ceria interactions 19-23. A direct experimental verification of the geometric and electronic structures of the copper-ceria interface at atomic scale, however, together with a quantitative description of the active sites for the activation of CO and H2O molecules during the low-temperature WGS reaction on the Cu/CeO2 catalysts, has not yet been obtained.
Here, we present the results of a detailed characterization of rigid-rod thiolate adlayers on Au(111) made by self-assembly of organothiols containing a terphenyl backbone, namely, p-terphenylthiol (TPT, C6H5-(C6H4)2-SH) and p-terphenylmethanethiol (TPMT, C6H5-(C6H4)2-CH2-SH) on Au(111). The results of low energy electron diffraction measurements reveal the presence of long-range order for adlayers prepared from both molecules. From the body of data obtained by X-ray photoelectron spectroscopy, infrared reflectionabsorption spectroscopy, near-edge X-ray absorption fine structure measurements, and scanning tunneling microscopy, a structure model for adlayers of TPT and TPMT on Au(111) is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.