Background Various observations have suggested that the course of COVID-19 might be less favourable in patients with inflammatory rheumatic and musculoskeletal diseases receiving rituximab compared with those not receiving rituximab. We aimed to investigate whether treatment with rituximab is associated with severe COVID-19 outcomes in patients with inflammatory rheumatic and musculoskeletal diseases.Methods In this cohort study, we analysed data from the French RMD COVID-19 cohort, which included patients aged 18 years or older with inflammatory rheumatic and musculoskeletal diseases and highly suspected or confirmed COVID-19. The primary endpoint was the severity of COVID-19 in patients treated with rituximab (rituximab group) compared with patients who did not receive rituximab (no rituximab group). Severe disease was defined as that requiring admission to an intensive care unit or leading to death. Secondary objectives were to analyse deaths and duration of hospital stay. The inverse probability of treatment weighting propensity score method was used to adjust for potential confounding factors (age, sex, arterial hypertension, diabetes, smoking status, body-mass index, interstitial lung disease, cardiovascular diseases, cancer, corticosteroid use, chronic renal failure, and the underlying disease [rheumatoid arthritis vs others]). Odds ratios and hazard ratios and their 95% CIs were calculated as effect size, by dividing the two population mean differences by their SD. This study is registered with ClinicalTrials.gov, NCT04353609.
Objective. Flares in rheumatoid arthritis (RA) and axial spondyloarthritis (SpA) may influence physical activity. The aim of this study was to assess longitudinally the association between patient-reported flares and activitytracker-provided steps per minute, using machine learning.Methods. This prospective observational study (ActConnect) included patients with definite RA or axial SpA. For a 3-month time period, physical activity was assessed continuously by number of steps/minute, using a consumer grade activity tracker, and flares were self-assessed weekly. Machine-learning techniques were applied to the data set. After intrapatient normalization of the physical activity data, multiclass Bayesian methods were used to calculate sensitivities, specificities, and predictive values of the machine-generated models of physical activity in order to predict patient-reported flares.Results. Overall, 155 patients (1,339 weekly flare assessments and 224,952 hours of physical activity assessments) were analyzed. The mean ± SD age for patients with RA (n = 82) was 48.9 ± 12.6 years and was 41.2 ± 10.3 years for those with axial SpA (n = 73). The mean ± SD disease duration was 10.5 ± 8.8 years for patients with RA and 10.8 ± 9.1 years for those with axial SpA. Fourteen patients with RA (17.1%) and 41 patients with axial SpA (56.2%) were male. Disease was well-controlled (Disease Activity Score in 28 joints mean ± SD 2.2 ± 1.2; Bath Ankylosing Spondylitis Disease Activity Index score mean ± SD 3.1 ± 2.0), but flares were frequent (22.7% of all weekly assessments). The model generated by machine learning performed well against patient-reported flares (mean sensitivity 96% [95% confidence interval (95% CI) 94-97%], mean specificity 97% [95% CI 96-97%], mean positive predictive value 91% [95% CI 88-96%], and negative predictive value 99% [95% CI 98-100%]). Sensitivity analyses were confirmatory.Conclusion. Although these pilot findings will have to be confirmed, the correct detection of flares by machinelearning processing of activity tracker data provides a framework for future studies of remote-control monitoring of disease activity, with great precision and minimal patient burden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.