Urine metabolomics is widely used for biomarker research in the fields of medicine and toxicology. As a consequence, characterization of the variations of the urine metabolome under basal conditions becomes critical in order to avoid confounding effects in cohort studies. Such physiological information is however very scarce in the literature and in metabolomics databases so far. Here we studied the influence of age, body mass index (BMI), and gender on metabolite concentrations in a large cohort of 183 adults by using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). We implemented a comprehensive statistical workflow for univariate hypothesis testing and modeling by orthogonal partial least-squares (OPLS), which we made available to the metabolomics community within the online Workflow4Metabolomics.org resource. We found 108 urine metabolites displaying concentration variations with either age, BMI, or gender, by integrating the results from univariate p-values and multivariate variable importance in projection (VIP). Several metabolite clusters were further evidenced by correlation analysis, and they allowed stratification of the cohort. In conclusion, our study highlights the impact of gender and age on the urinary metabolome, and thus it indicates that these factors should be taken into account for the design of metabolomics studies.
To get more insight into plant cell response to cadmium (Cd) stress, both proteomic and metabolomic "differential display" analyses were performed on Arabidopsis thaliana cells exposed to different concentrations of the toxic chemical. After a 24 h treatment, soluble proteins extracted from untreated and treated cells were separated by 2-D-PAGE and image analyses were performed to quantify and compare protein levels. Proteins up- and down-regulated in response to Cd were identified by MS and mapped into specific metabolic pathways and cellular processes, highlighting probable activation of the carbon, nitrogen, and sulfur metabolic pathways. For some of these proteins, Northern blot and RT-PCR analyses were performed to test transcript accumulation in response to Cd. In parallel, metabolite profiling analyses by LC coupled to ESI MS were initiated to better characterize the metabolic adaptation to the chemical stress. This study revealed that the main variation at the metabolite level came from the presence of six different families of phytochelatins, in A. thaliana cells treated with Cd, whose accumulation increases with Cd concentrations. Taken together these data provide an overview of the molecular and cellular changes elicited by Cd exposure.
Glutathione contributes to thiol-redox control and to extra-mitochondrial iron-sulphur cluster (ISC) maturation. To determine the physiological importance of these functions and sort out those that account for the GSH requirement for viability, we performed a comprehensive analysis of yeast cells depleted of or containing toxic levels of GSH. Both conditions triggered an intense iron starvation-like response and impaired the activity of extra-mitochondrial ISC enzymes but did not impact thiol-redox maintenance, except for high glutathione levels that altered oxidative protein folding in the endoplasmic reticulum. While iron partially rescued the ISC maturation and growth defects of GSH-depleted cells, genetic experiments indicated that unlike thioredoxin, glutathione could not support by itself the thiol-redox duties of the cell. We propose that glutathione is essential by its requirement in ISC assembly, but only serves as a thioredoxin backup in cytosolic thiol-redox maintenance. Glutathione-high physiological levels are thus meant to insulate its cytosolic function in iron metabolism from variations of its concentration during redox stresses, a model challenging the traditional view of it as prime actor in thiol-redox control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.