Neurotransmitter-gated ion channels of the Cys-loop receptor family mediate fast neurotransmission throughout the nervous system. The molecular processes of neurotransmitter binding, subsequent opening of the ion channel and ion permeation remain poorly understood. Here we present the X-ray structure of a mammalian Cys-loop receptor, the mouse serotonin 5-HT3 receptor, at 3.5 Å resolution. The structure of the proteolysed receptor, made up of two fragments and comprising part of the intracellular domain, was determined in complex with stabilizing nanobodies. The extracellular domain reveals the detailed anatomy of the neurotransmitter binding site capped by a nanobody. The membrane domain delimits an aqueous pore with a 4.6 Å constriction. In the intracellular domain, a bundle of five intracellular helices creates a closed vestibule where lateral portals are obstructed by loops. This 5-HT3 receptor structure, revealing part of the intracellular domain, expands the structural basis for understanding the operating mechanism of mammalian Cys-loop receptors.
ATP-sensitive K+ (KATP) channels are unique metabolic sensors formed by association of Kir6.2, an inwardly rectifying K+ channel, and the sulfonylurea receptor SUR, an ATP binding cassette protein. We identified an ATPase activity in immunoprecipitates of cardiac KATP channels and in purified fusion proteins containing nucleotide binding domains NBD1 and NBD2 of the cardiac SUR2A isoform. NBD2 hydrolyzed ATP with a twofold higher rate compared to NBD1. The ATPase required Mg2+ and was insensitive to ouabain, oligomycin, thapsigargin, or levamisole. K1348A and D1469N mutations in NBD2 reduced ATPase activity and produced channels with increased sensitivity to ATP. KATP channel openers, which bind to SUR, promoted ATPase activity in purified sarcolemma. At higher concentrations, openers reduced ATPase activity, possibly through stabilization of MgADP at the channel site. K1348A and D1469N mutations attenuated the effect of openers on KATP channel activity. Opener-induced channel activation was also inhibited by the creatine kinase/creatine phosphate system that removes ADP from the channel complex. Thus, the KATP channel complex functions not only as a K+ conductance, but also as an enzyme regulating nucleotide-dependent channel gating through an intrinsic ATPase activity of the SUR subunit. Modulation of the channel ATPase activity and/or scavenging the product of the ATPase reaction provide novel means to regulate cellular functions associated with KATP channel opening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.