Specific retinoid X receptor (RXR) agonists, such as LG100268 (LG268), and the thiazolidinedione (TZD) PPARgamma agonists, such as rosiglitazone, produce insulin sensitization in rodent models of insulin resistance and type 2 diabetes. In sharp contrast to the TZDs that produce significant increases in body weight gain, RXR agonists reduce body weight gain and food consumption. Unfortunately, RXR agonists also suppress the thyroid hormone axis and generally produce hypertriglyceridemia. Heterodimer-selective RXR modulators have been identified that, in rodents, retain the metabolic benefits of RXR agonists with reduced side effects. These modulators bind specifically to RXR with high affinity and are RXR homodimer partial agonists. Although RXR agonists activate many heterodimer partners, these modulators selectively activate RXR:PPARalpha and RXR:PPARgamma, but not RXR:RARalpha, RXR:LXRalpha, RXR:LXRbeta, or RXR:FXRalpha. We report the in vivo characterization of one RXR modulator, LG101506 (LG1506). In Zucker fatty (fa/fa) rats, LG1506 is a potent insulin sensitizer that also enhances the insulin-sensitizing activities of rosiglitazone. Administration of LG1506 reduces both body weight gain and food consumption and blocks the TZD-induced weight gain when coadministered with rosiglitazone. LG1506 does not significantly suppress the thyroid hormone axis in rats, nor does it elevate triglycerides in Sprague Dawley rats. However, LG1506 produces a unique pattern of triglycerides elevation in Zucker rats. LG1506 elevates high-density lipoprotein cholesterol in humanized apolipoprotein A-1-transgenic mice. Therefore, selective RXR modulators are a promising approach for developing improved therapies for type 2 diabetes, although additional studies are needed to understand the strain-specific effects on triglycerides.
Previous data have shown that RXR-selective agonists (e.g., 3 and 4) are insulin sensitizers in rodent models of non-insulin-dependent diabetes mellitus (NIDDM). Unfortunately, they also produce dramatic increases in triglycerides and profound suppression of the thyroid hormone axis. Here we describe the design and synthesis of new RXR modulators that retain the insulin-sensitizing activity of RXR agonists but produce substantially reduced side effects. These molecules bind selectively and with high affinity to RXR and, unlike RXR agonists, do not activate RXR homodimers. To further evaluate the antidiabetic activity of these RXR modulators, we have designed a concise and systematic structure-activity relationship around the 2E,4E,6Z-7-aryl-3-methylocta-2,4,6-trienoic acid scaffold. Selected compounds have been evaluated using insulin-resistant rodents (db/db mice) to characterize effects on glucose homeostasis. Our studies demonstrate the effectiveness of RXR modulators in lowering plasma glucose in the db/db mouse model.
Retinoid X receptor:peroxisome proliferative-activated receptor (RXR:PPAR) heterodimers play a critical role in the regulation of glucose (RXR/PPARgamma) and lipid metabolism (RXR/PPARalpha). Previously, we described a concise structure-activity relationship study of selective RXR modulators possessing a (2E,4E,6Z)-3-methyl-7-(3,5-dialkyl-6-alkoxyphenyl)-octa-2,4,6-trienoic acid scaffold. These studies were focused on the 2-position alkoxy side chain. We describe here the design and synthesis of a novel series of RXR selective modulators possessing the same aromatic core structure with the addition of a ring locked 6-7-Z-olefin on the trienoic acid moiety. The synthesis and structure-activity relationship studies of these 6,7-locked cyclopentenyl, phenyl, thienyl, furan, and pyridine-trienoic acid derivatives is presented herein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.