Binary toxin CDT or its genes have been identified in some strains of Clostridium difficile that also produce the large clostridial toxins, toxins A and B (A+B+CDT+), including a newly recognized epidemic strain in the United States and Canada. To study the effects of binary toxin alone, we characterized 4 binary toxin CDT-positive only (A-B-CDT+) C. difficile strains. Unlike other clostridial binary toxins, binary toxin CDT required exogenous trypsin for activation. Supernatants from all A-B-CDT+ strains caused marked fluid accumulation in the rabbit ileal loop assay after concentration and trypsinization. In addition, the ileal loop response was neutralized by antisera raised against other binary toxin-producing clostridia. Challenge of clindamycin-treated hamsters with these strains resulted in colonization but not diarrhea or death. Binary toxin CDT may play an adjunctive role to toxins A and B in the pathogenesis of C. difficile-associated disease but by itself may not be sufficient to cause disease.
The binary toxin genes were present in nearly two-thirds of the C. difficile strains, and they were correlated with the REA group. Severity of CDD was not closely associated with a specific clone or underlying disease, but it may be associated with the presence of the binary toxin genes. Larger studies are needed to discern whether a true association exists and whether the binary toxin alters the pathogenicity of the C. difficile strain.
We investigated the frequency of Clostridium perfringens in the normal fecal flora of healthy North Americans. About half of 43 subjects were colonized with C. perfringens at levels of approximately 10(6)cfu/g feces. Only type A strains were recovered. Spores sometimes outnumbered vegetative cells. Several genotypes were found. Some donors carried two genotypes, some only one. We found no alpha, beta2 or enterotoxin in the stools of any donors. Though some isolates carried toxin genes (e.g. cpe and cpb2) on plasmids, we saw no indication that healthy humans are the reservoir for the chromosomally-borne cpe recovered from cases of C. perfringens food poisoning.
Clostridium difficile causes approximately 25% of nosocomial antibiotic-associated diarrheas and most cases of pseudomembranous colitis. We evaluated C. DIFF CHEK, a new screening test that detects glutamate dehydrogenase of C. difficile. Our results showed that this test was comparable to PCR in sensitivity and specificity and outperformed bacterial culture.
Chronic kidney disease (CKD) is a global health problem; the growing gap between the number of patients awaiting transplant and organs actually transplanted highlights the need for new treatments to restore renal function. Regenerative medicine is a promising approach from which treatments for organ-level disorders (e.g., neurogenic bladder) have emerged and translated to clinics. Regenerative templates, composed of biodegradable material and autologous cells, isolated and expanded ex vivo, stimulate native-like organ tissue regeneration after implantation. A critical step for extending this strategy from bladder to kidney is the ability to isolate, characterize, and expand functional renal cells with therapeutic potential from diseased tissue. In this study, we developed methods that yield distinct subpopulations of primary kidney cells that are compatible with process development and scale-up. These methods were translated to rodent, large mammal, and human kidneys, and then to rodent and human tissues with advanced CKD. Comparative in vitro studies demonstrated that phenotype and key functional attributes were retained consistently in ex vivo cultures regardless of species or disease state, suggesting that autologous sourcing of cells that contribute to in situ kidney regeneration after injury is feasible, even with biopsies from patients with advanced CKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.