Knowledge of historical fire activity tends to be focused at local to landscape scales with few attempts to examine how local patterns of fire activity scale to global patterns. Generally, fire activity varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesised sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In eastern and western North America and western Europe and southern South America, charcoal records indicate less-than-present fire activity from 21,000 to ~11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greaterthan-present fire activity from ~19,000 to ~17,000 cal yr BP whereas most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ~13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8000 to ~2000 cal yr BP, Indonesia from 11,000 to 4000 cal yr BP, and southern South America from 6000 to 3000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the postglacial period. These complex patterns can be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load.
Understanding the causes and consequences of wildfires in forests of the western United States requires integrated information about fire, climate changes, and human activity on multiple temporal scales. We use sedimentary charcoal accumulation rates to construct long-term variations in fire during the past 3,000 y in the American West and compare this record to independent fire-history data from historical records and fire scars. There has been a slight decline in burning over the past 3,000 y, with the lowest levels attained during the 20th century and during the Little Ice Age (LIA, ca. 1400–1700 CE [Common Era]). Prominent peaks in forest fires occurred during the Medieval Climate Anomaly (ca. 950–1250 CE) and during the 1800s. Analysis of climate reconstructions beginning from 500 CE and population data show that temperature and drought predict changes in biomass burning up to the late 1800s CE. Since the late 1800s , human activities and the ecological effects of recent high fire activity caused a large, abrupt decline in burning similar to the LIA fire decline. Consequently, there is now a forest “fire deficit” in the western United States attributable to the combined effects of human activities, ecological, and climate changes. Large fires in the late 20th and 21st century fires have begun to address the fire deficit, but it is continuing to grow.
It is widely accepted, based on data from the last few decades and on model simulations, that anthropogenic climate change will cause increased fire activity. However, less attention has been paid to the relationship between abrupt climate changes and heightened fire activity in the paleorecord. We use 35 charcoal and pollen records to assess how fire regimes in North America changed during the last glacial-interglacial transition (15 to 10 ka), a time of large and rapid climate changes. We also test the hypothesis that a comet impact initiated continental-scale wildfires at 12.9 ka; the data do not support this idea, nor are continent-wide fires indicated at any time during deglaciation. There are, however, clear links between large climate changes and fire activity. Biomass burning gradually increased from the glacial period to the beginning of the Younger Dryas. Although there are changes in biomass burning during the Younger Dryas, there is no systematic trend. There is a further increase in biomass burning after the Younger Dryas. Intervals of rapid climate change at 13.9, 13.2, and 11.7 ka are marked by large increases in fire activity. The timing of changes in fire is not coincident with changes in human population density or the timing of the extinction of the megafauna. Although these factors could have contributed to fire-regime changes at individual sites or at specific times, the charcoal data indicate an important role for climate, and particularly rapid climate change, in determining broad-scale levels of fire activity.biomass burning ͉ charcoal ͉ comet ͉ Younger Dryas
Fire is well recognized as a key Earth system process, but its causes and influences vary greatly across spatial and temporal scales. The controls of fire are often portrayed as a set of superimposed triangles, with processes ranging from oxygen to weather to climate, combustion to fuel to vegetation, and local to landscape to regional drivers over broadening spatial and lengthening temporal scale. Most ecological studies and fire management plans consider the effects of fire-weather and fuels on local to sub-regional scales and time frames of years to decades. Fire reconstructions developed from high-resolution tree-ring records and lake-sediment data that span centuries to millennia offer unique insights about fire's role that cannot otherwise be obtained. Such records help disclose the historical range of variability in fire activity over the duration of a vegetation type; the role of large-scale changes of climate, such as seasonal changes in summer insolation; the consequences of major reorganizations in vegetation; and the influence of prehistoric human activity in different ecological settings. This paleoecological perspective suggests that fire-regime definitions, which focus on the characteristic frequency, size and intensity of fire and particular fuel types, should be reconceptualized to better include the controls of fire regimes over the duration of a particular biome. We suggest that approaches currently used to analyze fire regimes across multiple spatial scales should be employed to examine fire occurrence across multiple temporal scales. Such cross-scale patterns would better reveal the full variability of particular fire regimes and their controls, and provide relevant information for the types of fire regimes likely to occur in the future with projected climate and land-use change.
SummaryWildfires can significantly alter forest carbon (C) storage and nitrogen (N) availability, but the long-term biogeochemical legacy of wildfires is poorly understood.We obtained a lake-sediment record of fire and biogeochemistry from a subalpine forest in Colorado, USA, to examine the nature, magnitude, and duration of decadal-scale, fireinduced ecosystem change over the past c. 4250 yr. The high-resolution record contained 34 fires, including 13 high-severity events within the watershed.High-severity fires were followed by increased sedimentary N stable isotope ratios Our results support modern studies of forest successional C and N accumulation and indicate pronounced, long-lasting biogeochemical impacts of wildfires in subalpine forests. However, even repeated high-severity fires over millennia probably did not deplete C or N stocks, because centuries between high-severity fires allowed for sufficient biomass recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.