RLR-mediated type I IFN production plays a pivotal role in elevating host immunity for viral clearance and cancer immune surveillance. Here, we report that glycolysis, which is inactivated during RLR activation, serves as a barrier to impede type I IFN production upon RLR activation. RLR-triggered MAVS-RIG-I recognition hijacks hexokinase binding to MAVS, leading to the impairment of hexokinase mitochondria localization and activation. Lactate serves as a key metabolite responsible for glycolysis-mediated RLR signaling inhibition by directly binding to MAVS transmembrane (TM) domain and preventing MAVS aggregation. Notably, lactate restoration reverses increased IFN production caused by lactate deficiency. Using pharmacological and genetic approaches, we show that lactate reduction by lactate dehydrogenase A (LDHA) inactivation heightens type I IFN production to protect mice from viral infection. Our study establishes a critical role of glycolysis-derived lactate in limiting RLR signaling and identifies MAVS as a direct sensor of lactate, which functions to connect energy metabolism and innate immunity.
Hepatocellular carcinoma (HCC) exhibits cellular heterogeneity and embryonic stem‐cell–related genes are preferentially overexpressed in a fraction of cancer cells of poorly differentiated tumors. However, it is not known whether or how these cancer cells contribute to tumor initiation and progression. Here, our data showed that increased expression of pluripotency transcription factor Nanog in cancer cells correlates with a worse clinical outcome in HCC. Using the Nanog promoter as a reporter system, we could successfully isolate a small subpopulation of Nanog‐positive cells. We demonstrate that Nanog‐positive cells exhibited enhanced ability of self‐renewal, clonogenicity, and initiation of tumors, which are consistent with crucial hallmarks in the definition of cancer stem cells (CSCs). NanogPos CSCs could differentiate into mature cancer cells in in vitro and in vivo conditions. In addition, we found that NanogPos CSCs exhibited resistance to therapeutic agents (e.g., sorafenib and cisplatin) and have a high capacity for tumor invasion and metastasis. Knock‐down expression of Nanog in NanogPos CSCs could decrease self‐renewal accompanied with decreased expression of stem‐cell–related genes and increased expression of mature hepatocyte‐related genes. Overexpression of Nanog in NanogNeg cells could restore self‐renewal. Furthermore, we found that insulin‐like growth factor (IGF)2 and IGF receptor (IGF1R) were up‐regulated in NanogPos CSCs. Knock‐down expression of Nanog in NanogPos CSCs inhibited the expression of IGF1R, and overexpression of Nanog in NanogNeg cells increased the expression of IGF1R. A specific inhibitor of IGF1R signaling could significantly inhibit self‐renewal and Nanog expression, indicating that IGF1R signaling participated in Nanog‐mediated self‐renewal. Conclusion: These data indicate that Nanog could be a novel biomarker for CSCs in HCC, and that Nanog could play a crucial role in maintaining the self‐renewal of CSCs through the IGF1R‐signaling pathway. (HEPATOLOGY 2012;56:1004–1014)
The serine/threonine kinase Akt plays a central role in cell proliferation, survival and metabolism and its hyperactivation is linked to cancer progression. Here we report that Akt undergoes K64 methylation by SETDB1, which is crucial for cell membrane recruitment, phosphorylation and activation of Akt upon growth factor stimulation. Furthermore, we reveal an adaptor function of histone demethylase JMJD2A, which recognizes Akt K64 methylation and recruits E3 ligase TRAF6 and Skp2-SCF to the Akt complex, independently of its demethylase activity, thereby initiating K63-linked ubiquitination, cell membrane recruitment and activation of Akt. Notably, cancer associated Akt mutant (E17K) displays enhanced K64 methylation, leading to its hyper-phosphorylation and activation. SETDB1-mediated Akt K64 methylation is upregulated and correlated with Akt hyperactivation in non-small-cell lung carcinoma (NSCLC), promotes tumor development and predicts poor outcome. Collectively, these findings reveal complicated layers of Akt activation regulation coordinated by SETDB1-mediated Akt K64 methylation to drive tumorigenesis.
Breast cancer stem-like cells (BCSC) are crucial for metastasis but the underlying mechanisms remain elusive. Here, we report that tumor-infiltrating natural killer (NK) cells failed to limit metastasis and were not associated with improved therapeutic outcome of BCSC-rich breast cancer. Primary BCSCs were resistant to cytotoxicity mediated by autologous/allogeneic NK cells due to reduced expression of MICA and MICB, two ligands for the stimulatory NK cell receptor NKG2D. Furthermore, the downregulation of MICA/MICB in BCSCs was mediated by aberrantly expressed oncogenic miR20a, which promoted the resistance of BCSC to NK cell cytotoxicity and resultant lung metastasis. The breast cancer cell differentiation-inducing agent, all-trans retinoic acid, restored the miR20a-MICA/MICB axis and sensitized BCSC to NK cell-mediated killing, thereby reducing immune escape-associated BCSC metastasis. Together, our findings reveal a novel mechanism for immune escape of human BCSC and identify the miR20a-MICA/MICB signaling axis as a therapeutic target to limit metastatic breast cancer. Cancer Res; 74(20); 5746-57. Ó2014 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.