Molecular methods for predicting prognosis in patients with oral cavity squamous cell carcinoma (OSCC) are urgently needed, considering its high recurrence rate and tendency for metastasis. The present study investigated the genetic basis of variations in gene expression associated with poor prognosis in OSCC using Affymetrix SNP 6.0 and Affymetrix GeneChip Human Gene 1.0 ST arrays. We identified recurrent DNA amplifications scattered from 8q22.2 to 8q24.3 in 112 OSCC specimens. These amplicons demonstrated significant associations with increased incidence of extracapsular spread, development of second primary malignancies, and poor survival. Fluorescence in situ hybridization, in a validation panel consisting of 295 cases, confirmed these associations. Assessment of the effects of copy number variations (CNVs) on genome-wide variations in gene expression identified a total of 85 CNV-associated transcripts enriched in the MYC-centered regulatory network. Twenty-four transcripts associated with increased risk of second primary malignancies, tumor relapse, and poor survival. Besides MYC itself, a novel dysregulated MYC module plays a key role in OSCC carcinogenesis. This study identified a candidate molecular signature associated with poor prognosis in OSCC patients, which may ultimately facilitate patient-tailored selection of therapeutic strategies.
Given an undirected graph with nonnegative costs on the edges, the routing cost of any of its spanning trees is the sum over all pairs of vertices of the cost of the path between the pair in the tree. Finding a spanning tree of minimum routing cost is NP-hard, even when the costs obey the triangle inequality. We show t h a t the general case is in fact reducible to the metric case and present a polynomial-time approximation scheme valid for both versions of the problem. In particular, we show h o w to build a spanning tree of an n-vertex weighted graph with routing cost at most (1 + ) of the the minimum in time O(n O( 1 ) ). Besides the obvious connection to network design, trees with small routing cost also nd application in the construction of good multiple sequence alignments in computational biology.The communication cost spanning tree problem is a generalization of the minimum routing cost tree problem where the routing costs of di erent pairs are weighted by di erent requirement amounts. We observe that a randomized O(log n log log n)-approximation for this problem follows directly from a recent result of Bartal, where n is the number of nodes in a metric graph. This also yields the same approximation for the generalized sum-of-pairs alignment problem in computational biology.
This study is the first to demonstrate that the pathway regulated by the sensor kinase BfmS is associated with biofilm formation, adherence to biotic surfaces, serum resistance, and antibiotic susceptibility, which may be associated with the release of Omps in A. baumannii.
BackgroundThe opportunistic enterobacterium, Morganella morganii, which can cause bacteraemia, is the ninth most prevalent cause of clinical infections in patients at Changhua Christian Hospital, Taiwan. The KT strain of M. morganii was isolated during postoperative care of a cancer patient with a gallbladder stone who developed sepsis caused by bacteraemia. M. morganii is sometimes encountered in nosocomial settings and has been causally linked to catheter-associated bacteriuria, complex infections of the urinary and/or hepatobiliary tracts, wound infection, and septicaemia. M. morganii infection is associated with a high mortality rate, although most patients respond well to appropriate antibiotic therapy. To obtain insights into the genome biology of M. morganii and the mechanisms underlying its pathogenicity, we used Illumina technology to sequence the genome of the KT strain and compared its sequence with the genome sequences of related bacteria.ResultsThe 3,826,919-bp sequence contained in 58 contigs has a GC content of 51.15% and includes 3,565 protein-coding sequences, 72 tRNA genes, and 10 rRNA genes. The pathogenicity-related genes encode determinants of drug resistance, fimbrial adhesins, an IgA protease, haemolysins, ureases, and insecticidal and apoptotic toxins as well as proteins found in flagellae, the iron acquisition system, a type-3 secretion system (T3SS), and several two-component systems. Comparison with 14 genome sequences from other members of Enterobacteriaceae revealed different degrees of similarity to several systems found in M. morganii. The most striking similarities were found in the IS4 family of transposases, insecticidal toxins, T3SS components, and proteins required for ethanolamine use (eut operon) and cobalamin (vitamin B12) biosynthesis. The eut operon and the gene cluster for cobalamin biosynthesis are not present in the other Proteeae genomes analysed. Moreover, organisation of the 19 genes of the eut operon differs from that found in the other non-Proteeae enterobacterial genomes.ConclusionsThis is the first genome sequence of M. morganii, which is a clinically relevant pathogen. Comparative genome analysis revealed several pathogenicity-related genes and novel genes not found in the genomes of other members of Proteeae. Thus, the genome sequence of M. morganii provides important information concerning virulence and determinants of fitness in this pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.