Ion mobility spectrometry (IMS) is a key trace detection technique for explosives and the development of a simple, stable, and efficient nonradioactive ionization source is highly demanded. A dopant-assisted negative photoionization (DANP) source has been developed for IMS, which uses a commercial VUV krypton lamp to ionize acetone as the source of electrons to produce negative reactant ions in air. With 20 ppm of acetone as the dopant, a stable current of reactant ions of 1.35 nA was achieved. The reactant ions were identified to be CO 3by atmospheric pressure time-of-flight mass spectrometry, while the reactant ions in 63 Ni source were O 2. Finally, its capabilities for detection of common explosives including ammonium nitrate fuel oil (ANFO), 2,4,6-trinitrotoluene (TNT), N-nitrobis(2-hydroxyethyl)amine dinitrate (DINA), and pentaerythritol tetranitrate (PETN) were evaluated, and the limits of detection of 10 pg (ANFO), 80 pg (TNT), and 100 pg (DINA) with a linear range of 2 orders of magnitude were achieved. The time-of-flight mass spectra obtained with use of DANP source clearly indicated that PETN and DINA can be directly ionized by the ion-association reaction of CO 3 − to form PETN·CO 3 − and DINA·CO 3 − adduct ions, which result in good sensitivity for the DANP source. The excellent stability, good sensitivity, and especially the better separation between the reactant and product ion peaks make the DANP a potential nonradioactive ionization source for IMS.
Peroxide explosives, such as triacetone triperoxide (TATP) and hexamethylene trioxide diamine (HMTD), were often used in the terrorist attacks due to their easy synthesis from readily starting materials. Therefore, an on-site detection method for TATP and HMTD is urgently needed. Herein, we developed a stand-alone dopant-assisted positive photoionization ion mobility spectrometry (DAPP-IMS) coupled with time-resolved thermal desorption introduction for rapid and sensitive detection of TATP and HMTD in complex matrices, such as white solids, soft drinks, and cosmetics. Acetone was chosen as the optimal dopant for better separation between reactant ion peaks and product ion peaks as well as higher sensitivity, and the limits of detection (LODs) of TATP and HMTD standard samples were 23.3 and 0.2 ng, respectively. Explosives on the sampling swab were thermally desorbed and carried into the ionization region dynamically within 10 s, and the maximum released concentration of TATP or HMTD could be time-resolved from the matrix interference owing to the different volatility. Furthermore, with the combination of the fast response thermal desorber (within 0.8 s) and the quick data acquisition software to DAPP-IMS, two-dimensional data related to drift time (TATP: 6.98 ms, K0 = 2.05 cm(2) V(-1) s(-1); HMTD: 9.36 ms, K0 = 1.53 cm(2) V(-1) s(-1)) and desorption time was obtained for TATP and HMTD, which is beneficial for their identification in complex matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.