Metagenomic studies permit the exploration of microbial diversity in a defined habitat and binning procedures enable phylogenomic analyses, taxon description and even phenotypic characterizations in the absence of morphological evidence. Such lineages include asgard archaea, which were initially reported to represent archaea with eukaryotic cell complexity, although the first images of such an archaeon show simple cells with prokaryotic characteristics. However, these metagenome-assembled genomes (MAGs) might suffer from data quality problems not encountered in sequences from cultured organisms due to two common analytical procedures of bioinformatics: assembly of metagenomic sequences and binning of assembled sequences on the basis of innate sequence properties and abundance across samples. Consequently, genomic sequences of distantly related taxa, or domains, can in principle be assigned to the same MAG and result in chimeric sequences. The impacts of low-quality or chimeric MAGs on phylogenomic and metabolic prediction remain unknown. Debates that asgard archaeal data are contaminated with eukaryotic sequences are overshadowed by the lack of evidence indicating that individual asgard MAGs stem from the same chromosome. Here we show that universal proteins including ribosomal proteins of asgard archaeal MAGs fail to meet the basic phylogenetic criterion fulfilled by genome sequences of cultured archaea investigated to date: these proteins do not share common evolutionary histories to the same extent as pure culture genomes (PCGs) do, pointing to a chimeric nature of asgard archaeal MAGs. Our analysis suggests that some asgard archaeal MAGs represent unnatural constructs, genome-like patchworks of genes resulting from assembly and/or the binning process.
Microbial community structure and metabolic activities have profound impacts on biogeochemical processes in marine sediments. Functional bacteria such as nitrate-and sulfate-reducing bacteria respond to redox gradients by coupling specific reactions amenable to relevant energy metabolisms. However, similar functional patterns have not been observed for sedimentary archaea (except for anaerobic methanotrophs and methanogens). We coupled taxonomic composition with comprehensive geochemical species to investigate the participation of distinct bacteria and archaea in sedimentary geochemical cycles in a sediment core (300 cm) from Pearl River Estuary (PRE). Geochemical properties (NO 3 − , dissolved Mn and Fe, SO 4 2+ , NH 4 + ; dissolved inorganic carbon (DIC), δ 13 C DIC , dissolved organic carbon (DOC), total organic carbon (TOC), δ 13 C TOC , and fluorescent dissolved organic matter (FDOM)) exhibited strong depth variability of different trends. Bacterial 16S rRNA-and dsrB gene abundance decreased sharply with depth while archaeal and bathyarchaeotal 16S rRNA gene copies were relatively constant. This resulted in an increase in relative abundance of archaea from surface (11.6%) to bottom (42.8%). Network analysis showed that bacterial groups of Desulfobacterales, Syntrophobacterales and Gammaproteobacteria were significantly (P < 0.0001) associated with SO 4 2− and dissolved Mn while archaeal groups of Bathyarchaeota, Group C3 and Marine Benthic Group D (MBGD) showed close positive correlations (P < 0.0001) with NH 4 + , δ 13 C TOC values and humic-like FDOM. Our study suggested that these bacterial groups dominated in redox processes relevant to sulfate or metal oxides, while the archaeal groups are more like to degrade recalcitrant organic compounds in anaerobic sediments.
Microbial lipid biomarkers preserved in geological archives can be used to explore past climate changes. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are unique bacterial biomarkers that have been used as molecular tools for the quantitative determination of terrestrial temperatures and the pH of depositional environments over a range of geological timescales. However, the exact biological source organisms—especially of the entire suite of brGDGTs found in the environment—remains unclear; by extension, so do the mechanisms that govern these proxies. Here, we identified a brGDGT-producing strain Candidatus Solibacter usitatus Ellin6076, by identifying archaeal tetraether synthase homologs in bacterial genomes. This strain synthesizes diverse brGDGTs, including regular C5-methylated and cyclic brGDGTs, and brGDGTs comprise up to 66% of the major lipids, far exceeding the proportions found in previous studies. The degree of C5-methylation in cultured strain Ellin6076 is primarily determined by temperature, whereas cyclization appears to be influenced by multiple factors. Consequently, culture-derived paleoclimate indices are in agreement with the global soil-derived MBT'5ME (methylation index of C5-methyl brGDGTs) proxy for temperature but not the CBT5ME (cyclization index of C5-methyl brGDGTs) proxy for pH. Our findings provide important insights from a physiological perspective into the underlying mechanism of brGDGT-based proxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.