The effective control of crystallinity of covalent organic frameworks (COFs) and the optimization of their performances related to the crystallinity have been considered as big challenges. COFs bearing flexible building blocks (FBBs) generally own larger lattice sizes and broader monomer sources, which may endow them with unprecedented application values. Herein, we report the oriented synthesis of a series of two-dimensional (2D) COFs from FBBs with different content of intralayer hydrogen bonds. Studies of H-bonding effects on the crystallinity and adsorption properties indicate that partial structure of the COFs is "locked" by the H-bonding interaction, which consequently improves their microscopic order degree and crystallinity. Thus, the regulation of crystallinity can be effectively realized by controlling the content of hydrogen bonds in COFs. Impressively, the as-prepared COFs show excellent and reversible adsorption performance for volatile iodine with capacities up to 543 wt %, much higher than all previously reported adsorbents, although the variation tendency of adsorption capacities is opposite to their crystallinity. This study provides a general guidance for the design and construction of highly/appropriately crystalline COFs and ultrahigh-capacity iodine adsorbents.
Compared to the current mainstream rigid covalent organic frameworks (COFs) linked by imine bonds, flexible COFs have certain advantages of elasticity and self‐adaptability, but their construction and application are greatly limited by the complexity in synthesis and difficulty in obtaining regular structure. Herein, we reported for the first time a series of flexible amine‐linked COFs with high crystallinity synthesized by formic acid with unique catalytic and reductive bifunctional properties, rather than acetic acid, the most common catalyst for COF synthesis. The reaction mechanism was demonstrated to be a synchronous in situ reduction during the formation of imine bond. The flexibilities of the products endow them with accommodative adaptability to guest molecules, thus increasing the adsorption capacities for nitrogen and iodine by 27 % and 22 %, respectively. Impressively, a novel concept of flexibilization degree was proposed firstly, which provides an effective approach to rationally measure the flexibility of COFs.
Elastic metal–organic materials (MOMs) capable of multiple stimuli‐responsiveness based on dual‐stress and thermally responsive triple‐helix coordination polymers are presented. The strong metal‐coordination linkage and the flexibility of organic linkers in these MOMs, rather than the 4 Å stacking interactions observed in organic crystals, causes the helical chain to act like a molecular spring and thus accounts for their macroscopic elasticity. The thermosalient effect of elastic MOMs is reported for the first time. Crystal structure analyses at different temperatures reveal that this thermoresponsiveness is achieved by adaptive regulation of the triple‐helix chains by fine‐tuning the opening angle of flexible V‐shaped organic linkers and rotation of its lateral conjugated groups to resist possible expansion, thus demonstrating the vital role of adaptive reorganization of triple‐helix metal–organic chains as a molecular spring‐like motif in crystal jumping.
Photocatalytic conversion of biomass derived chemicals to valuable products is a highly sustainable process. Herein we report the photocatalytic hydrogenation of maleic acid to succinic acid and oxidation of 5-hydroxymethylfurfural...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.