A synthetic genetic system is designed and characterized that allows Escherichia coli to sense and eradicate Pseudomonas aeruginosa, providing a novel antimicrobial strategy that could potentially be applied to fighting infectious pathogens.
Biofoundries provide an integrated infrastructure to enable the rapid design, construction, and testing of genetically reprogrammed organisms for biotechnology applications and research. Many biofoundries are being built and a Global Biofoundry Alliance has recently been established to coordinate activities worldwide.
Light-regulated modules offer unprecedented new ways to control cellular behavior in precise spatial and temporal resolution. The availability of such tools may dramatically accelerate the progression of synthetic biology applications. Nonetheless, current optogenetic toolbox of prokaryotes has potential issues such as lack of rapid and switchable control, less portable, low dynamic expression and limited parts. To address these shortcomings, we have engineered a novel bidirectional promoter system for Escherichia coli that can be induced or repressed rapidly and reversibly using the blue light dependent DNA-binding protein EL222. We demonstrated that by modulating the dosage of light pulses or intensity we could control the level of gene expression precisely. We show that both light-inducible and repressible system can function in parallel with high spatial precision in a single cell and can be switched stably between ON- and OFF-states by repetitive pulses of blue light. In addition, the light-inducible and repressible expression kinetics were quantitatively analysed using a mathematical model. We further apply the system, for the first time, to optogenetically synchronize two receiver cells performing different logic behaviors over time using blue light as a molecular clock signal. Overall, our modular approach layers a transformative platform for next-generation light-controllable synthetic biology systems in prokaryotes.
Recent examples of new genetic circuits that enable cells to acquire biosynthetic capabilities, such as specific pathogen killing, present an attractive therapeutic application of synthetic biology. Herein, we demonstrate a novel genetic circuit that reprograms Escherichia coli to specifically recognize, migrate toward, and eradicate both dispersed and biofilm-encased pathogenic Pseudomonas aeruginosa cells. The reprogrammed E. coli degraded the mature biofilm matrix and killed the latent cells encapsulated within by expressing and secreting the antimicrobial peptide microcin S and the nuclease DNaseI upon the detection of quorum sensing molecules naturally secreted by P. aeruginosa. Furthermore, the reprogrammed E. coli exhibited directed motility toward the pathogen through regulated expression of CheZ in response to the quorum sensing molecules. By integrating the pathogen-directed motility with the dual antimicrobial activity in E. coli, we achieved signifincantly improved killing activity against planktonic and mature biofilm cells due to target localization, thus creating an active pathogen seeking killer E. coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.